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Abstract— In this work, a spectral element method (SEM)
in cylindrical coordinates is explored for analyzing the
electromagnetic field propagation in eccentric coaxial waveguides
filled with anisotropic media. The proposed formulation
employs conformal transformation optics to map the original
problem into an equivalent concentric coaxial waveguide.
QOur novel cylindrical-coordinate-based SEM facilitates the
mapping between reference and curvilinear elements for
waveguides that present cylindrical-conforming boundaries.
The proposed approach was validated against perturbation
and finite-difference-based solutions, and preliminary results
show that our solution excels because of its accuracy and
low computational cost. With a few adaptations, the present
cylindrical SEM formulation can be extended for modeling a large
class of problems involving complex media such as metamaterial
devices and geophysical exploration sensors.

Keywords — Anisotropic media, conformal transformation
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I. INTRODUCTION

The study of electromagnetic propagation in coaxial
waveguides with an offset in the center conductor is
essential in several applications such as sensing probes,
microwave filters, geophysical exploration, and the medical
industry [1]-[3]. Several approaches have been developed to
determine the cutoff wavenumbers of the propagation modes
in these structures. In [4], conformal mapping was used to
transform the eccentric coaxial cross-section into an equivalent
problem covering a rectangular domain. In [5], cylindrical
harmonic functions were combined with Graf’s theorem to
model the effect of small eccentricities. In [6], the Helmholtz
equation was solved in a bipolar coordinate system (BCS)
by the separation of variables. In [7], transformation optics
principles were employed to map the eccentric problem into
an equivalent concentric problem, and the cutoff wavenumbers
were obtained using perturbation techniques.

The spectral element method (SEM) has been
applied successfully to a large variety of electromagnetic
problems [8]-[10]. The work [10] indicates that the
SEM formulation based on cylindrical coordinates
requires considerably fewer elements and degrees of
freedom (DoF) than the conventional Cartesian approach
for cylindrical-conforming geometries. With this in mind,
the present work applies transformation optics to map the
original eccentric waveguide problem into an equivalent
concentric one similar to [7] but here with no restrictions on
the eccentricity offset. The cylindrical SEM is then employed
for the solution of the mapped problem.
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(a) Cross-section €2 of an eccentric coaxial waveguide.
(b) Cross-section €2 of a concentric coaxial waveguide.

(b)

Fig. 1.

II. FORMULATION OVERVIEW
A. Variational Waveguide Problem

Consider an eccentric coaxial waveguide invariant along
the axial direction. The eccentric geometry is referred to
as a cylindrical coordinate system denoted by (p,®,2).
The associated cross-section €2 is depicted in Fig. la. The
inner circular cylinder with radius 7y is a perfect electric
conductor (PEC) with an offset d from the Z-axis. The outer
cylinder is represented by a PEC at 7;. The waveguide is
filled with a uniaxially anisotropic medium characterized by
complex permeability i = diag(fis, jis, ji-) and permittivity
€ = diag(€s, €s, €,) tensors. From conformal transformation
optics principles [11]-[13], the original electromagnetic
problem in the eccentric coordinates (ﬁ,é,é) can be
transformed into a concentric problem with coordinates

(p, ¢, 2) using
F=J-F, with F e {E,H}, (1)
2

where J is the Jacobian of the transformation (5, ,3) —
(p,¢,z). Assuming Z = z and 71 = r1, we can express the
transformed constitutive tensors as [13]

D= |j\_1j-p-jT, with p € {u, €},

b = diag(ps, ps, = (p, 0)) = diag(ps s || '52), - (3)
with p € {u, €}, where
. 1— & /i)
717 = Q-fuea) 4)
(1 —2pcos¢p/za + p?/73)?
_ /2 _ 472 2 m2 7
T1,2 = —crve T 2C Tl, with ¢ = o4 d )
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The problem in {2-domain (depicted in Fig. 1b) can be
solved by decomposing electromagnetic fields into a sum
of transverse magnetic (TM) and transverse electric (TE)
modes [14, Ch. 5]. It is convenient to solve F/, and H, axial
field components and then compute the transverse components
of the fields in cylindrical coordinates. The wave equation for
F., and H, in the concentric scenarios satisfies

Ps
where V2 is the transverse Laplacian operator, k, is the radial
wavenumber, F' = E, if p,, = €., and FF = H, if
Ds,z = [bs . Using the Galerkin method [15], we can write
the variational formulation for problem (6) as
p=(p

Hpanw) <o

where the brackets denote an inner product in Hilbert space,
Fe{E, H,},and W € C(Q).

=0, 6)

(V. F, VW) — k:< ™

B. Spectral Element Method

Our computational domain 1is first discretized by
four elements 2¢ covering the entire coaxial waveguide
cross-section {2 as shown in Fig. 2. Each element is described
by the polar coordinates (p, ¢), which is then mapped into the
reference coordinates (£, 7) via

pe(§) = 0.5(pg + p1) +0.5(pT — pp)¢, Y€ € [-1,1], (8a)
¢°(n) = 0.5(¢5 + ¢7) + 0.5(65 — ¢g)n, Vn € [=1,1]. (8b)

The mapping above allows us to relate the transverse points of
the reference element covering —1 < ¢ <land -1<n<1
with the physical element covering pf < p < p{ and ¢§ <
¢ < ¢f. The associated Jacobian matrix of this coordinate
transformation is given by

dp°

je _ 358 8776 —_ |: 05(p§ - p(e)) 0
: Poe Phr 0 0.5p(¢7 — ¢§)

©))
Note that the Jacobian is diagonal, consequently, p- and
n-directions are decoupled, and directions ¢ and & are also
decoupled [10].

To represent the field components in the reference
coordinates, we use Lagrange basis functions associated
with Gauss-Lobatto-Legendre (GLL) sampling points. For
example, with the sampling points & € [—1,1], for all

j=1,2,...., N+ 1, along the coordinate &, the Nth-order
one-dimensional GLL basis function is given by
N+1
H - i’“ Vé e [-1,1], (10)
bty 1Sk

where the N + 1 interpolation nodes & are the roots
of the (N + 1)-degree completed Lobatto polynomial
(1 — &€)Lon_1(§) = 0. Accordingly, the two-dimensional
GLL basis function is obtained via tensor-product expansions

Vi (&m) = oY (©)oY () V(& m) € 1,12 (1)
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Fig. 2. Discretization of a coaxial domain €2 into four elements.

On the other hand, the corresponding basis function ¢7; and
its gradient in the physical element can be obtained by the
covariant mappings [15]

5i(p,0) = wu(f 1) ) (12)
Vs(pd) = JE Vb (Em)
where V, = (%,%%)T, @S = (8%, %)T. The Jacobian

matrix J' ¢ is defined by (9), and |J ¢| denotes its determinant.
To construct the discrete form of problem (7), the axial
field F' in the reference domain is expanded as
(N+1)?

Z aniﬁn(& 77)'

n=1

F(fﬂ?) = (13)
Following the Galerkin method, test functions are identical to
the basis functions, W = ), for m = 1,2, ..., (N + 1)2.
Using (13) and (12), we can define elemental matrices that
represent the inner products in (7). These matrices can be
written in reference coordinates as

R = —1 A A =
(m.n) / / V)T - (J¢ N )| T ded,
(14a)

m ’I’L / / pz ))wn ¢m\J€|d§d77
(14b)

The integrands in (14) are evaluated using the Gauss-Lobatto
quadrature [16]. The global diffusion matrix D and global
mass matrix M are assembled via elemental matrices D¢ and
Me, for e € {1,2,3,4}, respectively. Next, we define the
generalized eigenvalue problem

Da = k.Ma, (15)

where k:%c and a are the eigenvalues and eigenvectors. The
eigenvalues are associated with the radial cutoff wavenumbers,
while the eigenvectors are associated with the axial field
coefficients in (13).

III. NUMERICAL RESULTS

As our first validation, we consider an eccentric waveguide
with 7 5 mm, Ty 0.057y, and offset

d
0.0571, assuming the background medium as the vacuum.
This problem was considered before in [6], [7] and is
chosen here to evaluate the accuracy of our SEM-based
technique. Table 1 shows the cutoff wavenumbers £,.



Table 1. Cutoff wavenumbers were obtained by the FEM from [17], BCS from [6], CMPM and RPM from [7], and our SEM-based technique. The relative

percentage errors € (%) were calculated using the dense-mesh FEM solution as a reference.

FEM BCS CMPM RPM SEM
Mode [ kpe ™) [ kpe ™D [ (%) [ kpe M= D) [ (%) | kpe m™ D) [ € (%) [ kpe m™ ) [ € (%)
TE11 366.156 367.226 0.292 367.789 0.446 366.230 0.020 366.370 | 0.058
TE21 610.692 612.837 | 0.351 611.333 0.105 610.796 0.017 610.800 | 0.017
TE31 840.159 842.354 0.261 843.861 0.441 840.234 0.009 840.235 0.009
TMo1 610.692 614.559 0.633 614.109 0.559 610.674 0.003 611.070 | 0.061
TM11 775.540 774.038 0.194 774.695 0.109 775.698 0.020 775.662 0.032
TM2; | 1027.331 1029.802 | 0.241 | 1028.743 | 0.137 | 1027.383 | 0.005 | 1027.386 | 0.006
1 TE11 TE2y TE3
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Fig. 3. Pair of normalized axial magnetic fields H, for (a) TE;; and (b) 0.10 BA 010 BA | 0.10 @A N
TE2;1 modes obtained by SEM.
0.05 - B | 0058 — o,oslﬂ —
| | |
for the first three TE and TM modes obtained by 560 600 640 760 790 820 1,025 1,040 1,055
(a) dense-mesh FEM from CST Studio [17], (b) BCS from [6], kpe (m—1) kpe (m—1) kpe (m—1)

(c) cavity-material perturbation (CMPM) and (d) regular
perturbation method (RPM) both from [7], and (e) the
proposed SEM using expansion functions of order N = 7.
The relative percentage error € (%) was defined using the
dense-mesh FEM solution as reference. All methods show
good agreement, but the errors observed in BCS and CMPM
approaches are considerably larger than in the RPM and SEM
counterparts. An advantage of SEM compared to RPM is the
ability to obtain a pair of eigenvalues associated with the
symmetry planes of the problem at hand. Fig. 3 shows pairs
of normalized axial magnetic field patterns for the TE;; and
TEs; configurations. In addition, the accuracy of SEM can
be improved by increasing the expansion order N regardless
of the eccentricity, while the accuracy of RPM perturbation
formulas in [7] degrades as the eccentricity increases.

Given the same waveguide as before, now we investigate
the accuracy of the SEM solutions considering different
eccentricity offsets d € {0.0571,0.1071, 0.1571, 0.207 }.
Fig. 4 shows the cutoff wavenumber of the first three TE and
TM modes as a function of the normalized offset CZ/ 71 using
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Fig. 4. Cutoff wavenumbers for (a) TE and (b) TM modes as a function of
the normalized eccentricity distance d/71 get by CMPM (A), by RPM (0)),
by FEM (o), and by SEM (+).

FEM from [17], CMPM and RPM from [7], and the present
SEM-based approach. Notice that CMPM does not yield
results for larger offsets d > 0.17;. In particular, the TMy;
and TMy; results from RPM present a noticeable error for
d= 0.271. In all simulated cases, the SEM showed excellent
agreement compared to the FEM reference solution, which
indicates that this approach can be extended to geometries that
present a more significant offset of the inner conductor.
Finally, we investigate the ability of our SEM formulation
to solve eccentric waveguides filled with anisotropic media.
For this, we reproduce the cases considered in [7], in which
€s = €0€rs, €5 = €0€ry, and [y = i, = o, Where €g and g
are the vacuum values. The geometry has ¥y = 5 mm, 7y =
0.0571, and offset d= 0.27;. Figs. 5 and 6 show results for the
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Fig. 5. Cutoff wavenumbers for the TMp; mode as a function of the
anisotropic permittivity ratio €,s /€y, with &, = 1.
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Fig. 6. Cutoff wavenumbers for the TMp; mode as a function of the

anisotropic permittivity ratio & /é&rs, with &., = 1.

Table 2. Computational cost.

FIT CMPM RPM SEM
Case [ 15 min 44 s 2.07 s 16.72s | 637 s
Case IT | 22 min 27.10 s 243 s 21.60s | 6.37s

cutoff wavenumbers of the TM; mode as a function of €,.; and
€r». We use dense-mesh finite-integration technique (FIT) [17]
results as reference. We can observe that the SEM outperforms
both the CMPM and RPM.

The computational time cost required by the SEM
(expansion function of order N = 7) is compared with that
of the FIT, CMPM, and RPM in Table 2 for the anisotropic
waveguide with €., = 5 and €,, = 1 (Case I), with €., =5
and €,; = 1 (Case II). The present SEM shows excellent
computational performance compared to the other techniques,
considering also that the CMPM does provide a similar level
of accuracy. The SEM-based algorithms were written in the
MATLAB [18] environment running on a PC with 2.90 GHz
Intel Core 17-10700 with eight cores.

IV. CONCLUSION

This work has investigated a novel SEM in cylindrical
coordinates for solving the modal fields in eccentric coaxial
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waveguides filled with uniaxially anisotropic media. The
proposed formulation employs transformation optics to map
the original problem into an equivalent concentric coaxial
problem. The SEM results showed excellent agreement
with dense-mesh reference FEM and FIT solutions, at a
considerably lower computational cost.
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