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Abstract — The Harrow/Hassidim/Lloyd algorithm is a
celebrated quantum matrix equation solver. Its Hamiltonian
simulation involves a quantum walk process. A newly developed
Quantum Walk Unitary HHL (QWU-HHL) leverages the spectral
relationship between the quantum walk operator and the system
matrix, and uses the quantum walk operator as its unitary in
the phase estimation directly, allowing Hamiltonian simulation in
the classical HHL to be removed, hence improving its efficiency.
Despite the potential of being exponentially faster than classical
matrix equation solvers, HHL is not feasible in the noisy
intermediate-scale quantum era because its quantum circuit is too
deep to preserve an accurate solution. In this work, we investigate
the error behavior of QWU-HHL on a 7-qubit quantum system.
Instead of executing the entire circuit, the behaviors of its
sub-circuits which each contain only an initialization and a single
gate are recorded. The error caused by isolated initialization and
operation are analyzed.
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I. INTRODUCTION

Matrix equations are ubiquitous in computational

problems. The number of unknowns solvable by classical

matrix algorithms has grown as computer hardware evolves.

However, the polynomial cost associated with conventional

solutions to matrix equations become prohibitive with large

enough problem sizes. In computational electromagentics, a

3-D scattering problem ten wavelengths in size can result

in millions of unknowns. Quantum computing provides a

theoretically attractive alternative to perpetually seeking

larger classical computing resources to solve larger problems.

Specifically, the Harrow/Hassidim/Lloyd (HHL) algorithm

[1] is a sparse quantum matrix equation solver that scales

as O(logN), where N is the number of linear equations.

Compared with the optimal classical algorithm that scales

as O(N) (for sparse matrices with a constant number of

unknowns per row), HHL provides exponential speedup.

HHL represents the solution to a matrix equation in

terms of eigenvalues and eigenvectors of the system operator.

Eigenvalues are computed using quantum phase estimation

(QPE) by a Hamiltonian simulation which applies the

unitary eiAt to |b〉 [2], where the implementation of the

Hamiltonian simulation uses the quantum walk algorithm [3].

A recently-proposed improvement that we refer to herein as

the quantum walk unitary HHL (QWU-HHL) [4] improves the

efficiency of classical HHL by choosing the quantum walk

operator as the unitary directly and removing the extra step

of Hamiltonian simulation of eiAt. While this improvement is

theoretically promising, HHL and its variants are practically

troubled as their implementation on noisy intermediate-scale

quantum (NISQ) hardware has proven to be futile due to

NISQ hardware quantum information loss, especially for deep

circuits [5]. In an attempt to better understand the effects of

quantum information loss during the QWU-HHL algorithm,

in this work we subdivide the algorithm into a sequence of

quantum gates after each of which the error can be assessed.

This study effectively experimentally addresses the question

of whether or not it is possible to work around deep circuit

effects by subdividing and re-intializing the problem at each

subdivision. This investigation is undertaken on a 7-qubit

quantum processor.

II. THE QUANTUM WALK UNITARY HHL ALGORITHM
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Fig. 1. HHL diagrams: (a) classical HHL; (b) QWU-HHL.

We seek to solve the matrix equation A |x〉 = |b〉,
where A ∈ C

N×N is Hermitian and N is a power of 2
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such that n = log2(N). If the matrix does not have these

properties, an appropriately prepared matrix can be generated

by straightforward augmentation of A [4].

The quantum circuit diagram of QWU-HHL is shown in

Fig.1b while the diagram of classical HHL is provided in

Fig.1a for comparison. Comparing QWU-HHL to HHL we

observe that QWU-HHL needs two (n+ 1)-qubit registers r1
and r2 to store the eigenvectors of the quantum walk operator

W . In these registers, the last qubit is the ancilla qubit (denoted

with superscript a) used to distinguish states in the first n
data qubits (denoted with superscript d). Hence, the states

in registers r1 and r2 are represented as |r1〉 = |rd1 , ra1〉,
|r2〉 = |rd2 , ra2〉. Besides r1 and r2, the remaining registers

are the same as classical HHL, i.e., an np-qubit phase register

and one qubit for the HHL ancilla.

Complete details of the QWU-HHL framework can be

found in [4]. The difference between QWU-HHL and classical

HHL are discussed in what follows, where QWU-HHL

proceeds according to the following six steps:

1) Encode |b〉 into |rd1〉
2) Apply T0 to |r1〉 and |r2〉
3) Perform the quantum phase estimation with W
4) Rotate the HHL ancilla controlled by |p〉
5) Invert the quantum phase estimation.

6) Invert T0

Compared to the classical HHL [1] in Fig.1a, QWU-HHL

has the additional steps of applying T0 and its inverse (steps

2 and 6). In the classical HHL, these steps are unnecessary

because the unitary U = eiAt and matrix A have the same

eigenvectors |uj〉 , j = 0, 1, ...N − 1. Thus, in HHL, once

|b〉 is encoded into register r in the eigenbasis, |r〉 is in the

superposition of the eigenstates of U :

|b〉 =
N−1∑
j=0

βj |uj〉 (1)

In comparison, the QWU-HHL unitary is the quantum walk

operator

W = iS(2TT † − I) (2)

where the swap operator S and operator T are defined in

[4]. Compared with U , the eigenvectors of W have a more

complicated relation with those of A. Therefore, to arrive at the

superposition in the same form as in (1), we need to actively

prepare the states in registers r1 and r2 as the eigenvectors of

W . This is achieved by applying T0 to these registers at step

2, where

T0 =
N−1∑
j=0

(|j, 0〉 〈j, 0| ⊗Bj + |j, 1〉 〈j, 1| ⊗B′
j

)
, (3)

and the state preparation operators Bj and B′
j are defined as

Bj |0〉⊗n |0〉 = |φj , 0〉 , B′
j |0〉⊗n |0〉 = |0〉⊗n |1〉 . (4)

Since we apply T0 at the beginning of the algorithm, we invert

it at the end (step 6).

Other steps of the algorithm are also present in the classical

HHL. The difference is that the operations are tailored with the

walk operator W instead of the Hamiltonian evolution operator

U . For example, the eigenvalues of A (denoted by λj) are

extracted from the eigenvalue phase of W (denoted by θj)

stored in the phase register as

λj = X sin (2πθj)− d, (5)

where θj ∈ [0, 1) is defined as μj = e2πθj for the eigenvalue

μj of W , and d is a pre-determined shift that arises from

avoiding a branch cut in a square root [4]. The extracted

eigenvalue will be used to calculate the angle of rotation

applied to the HHL ancilla.

III. EXPERIMENT AND RESULTS

At the time of writing, we have access to a 7-qubit

quantum processor (IBM Jakarta). After assigning one qubit

for each of rd1 , r
a
1 , r

d
2 , r

a
2 and the HHL ancilla a, two qubits

are left for the phase register p. According to the definitions

in Section II, our quantum hardware limits us to consider the

case n = 1, nq = 2, N = 2n = 2, i.e., a 2×2 matrix equation.

For the purpose of demonstration, we choose a matrix equation

that can be solved exactly by two phase qubits. That is, if we

choose the eigenvalue phases of W from the binary phases

0.00, 0.01, 0.10, and 0.11, they can be represented without

error. Hence, we aim to design a 2 × 2 matrix equation that

results in a W with eigenvalues from this set. The system

A =

[−2 1
1 −2

]
(6)

with the choice d = 3, X = 2 produces the prepared matrix

A′ = A+ dI =

[
1 1
1 1

]
, (7)

which will be used to construct the quantum walk operator

W . The eigenvalues of A are λ0 = −1, λ1 = −3. When

plugging the values of λ,X , and d into (5), we find that the

four eigenphases of W are 0.00, 0.01 (repeated twice), and

0.10, indeed representable without error by two qubits. We

use the normalized equal superposition of eigenvectors as the

RHS vector, i.e., |b〉 = |1〉.
The implementation of the algorithm amounts to applying

the operators in Fig.1b in sequence, while each operator is

constructed from a series of more fundamental quantum gates

such as Hadamard gates, controlled gates, and rotation gates.

For the specific 2× 2 matrix equation, 120 fundamental gates

are needed after problem-specific simplification. The entire

HHL circuit of 120 gates is, after transpilation in terms of

a given set of basis gates, too deep for the NISQ hardware,

which motivates us to isolate each gate in action. This gate

isolation allows us to observe the intermediate states in the

entire quantum circuit, facilitating the study of error occurring

at each gate. As a result of the gate isolation, the entire

quantum circuit is divided into 120 sub-circuits, where in each

sub-circuit only one gate is applied, as shown in Fig. 2. The

state vector at the end of each sub-circuit is recorded using the
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Qiskit state vector simulator to initialize the next sub-circuit.

On the Jakarta backend, each sub-circuit is measured both

right after the initialization and following the application of

the single gate. The measurement results are compared with

their simulated counterparts to benchmark the error of the

initialization and the entire sub-circuit.

Initialization
A single 

gate

Fig. 2. A sample sub-circuit. Each sub-circuit contains two operations: the
initialization that operates on all registers to set the state vector to a target state
vector (the final state vector of the last sub-circuit) and a single fundamental
gate applied to the work register. The sub-circuit is sliced at (1) and (2), the
qubit states at these check points are recorded from both a simulator and the
real quantum backend: IBM Jakarta.

A quantum circuit is transpiled before it is executed

on a backend. The IBM Jakarta has six basis gates:

CX, I,Rz,
√
X,X , and the if-else gate, where the first five

are picked to transpile the circuit. The basis gate count of

each transpiled sub-circuit is given in Fig. 3. We observe that

Fig. 3. The basis gate count of sub-circuits when transpiled with five basis
gates on IBM Jakarta.

the initialization is an expensive process–the gate count due to

initialization dominates the total gate count in each sub-circuit.

As more gates means more operation time, causing a larger

possibility of decoherence [6] (the major source of quantum

information loss), the fact that the initialization requires more

basis gates hints that the initialization is the main error

source in a sub-circuit’s initialization and single gate operation.

Fig. 4 confirms this. In fact, an entire sub-circuit sometimes

provides more accurate results than the initialization part of

that sub-circuit. The last sub-circuit yields a final probability

Fig. 4. The relative error of the probability vector generated from IBM Jakarta
when compared with its simulated counterpart.

vector that is less than 50% accurate. This error is too high for

any practical implementation of the algorithm in the quantum

hardware, especially considering how small the problem is. In

contrast, the simulated solution provides an average relative

error of 1.125× 10−10.

IV. CONCLUSION

It has been previously reported that QPE (an integral part of

HHL) is not feasible on NISQ hardware [5]. Our experimental

findings for QWU-QPE further confirm this, indicating that the

initializing error required when decomposing the circuit into

sub-circuits is catastrophic. These conclusions may change in

the future, should a reliable quantum initialization routine be

found. We observe that the re-initialization and division routine

is not effective with Qiskit’s default initialization functionality.

The issue is that initializing the qubits into target states

requires more gates than the gate count threshold that limits the

accuracy. Other initialization techniques and quantum-classic

hybrid systems will be investigated in future work.

REFERENCES

[1] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum
algorithm for linear systems of equations,” Physical Review
Letters, vol. 103, no. 15, oct 2009. [Online]. Available:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502

[2] A. M. Childs, “On the relationship between continuous- and
discrete-time quantum walk,” Communications in Mathematical Physics,
vol. 294, no. 2, pp. 581–603, oct 2009. [Online]. Available:
https://link.springer.com/article/10.1007/s00220-009-0930-1

[3] D. Berry and A. Childs, “Black-box hamiltonian simulation and unitary
implementation,” Quantum Information and Computation, vol. 12, no.
1-2, pp. 29–62, Jan. 2012.

[4] C. D. Phillips and V. I. Okhmatovski, “A quantum computer
amenable sparse matrix equation solver,” 2021. [Online]. Available:
https://arxiv.org/abs/2112.02600

[5] R. Yalovetzky, P. Minssen, D. Herman, and M. Pistoia,
“Nisq-hhl: Portfolio optimization for near-term quantum hardware,”
arXiv preprint arXiv:2110.15958, 2021. [Online]. Available:
https://arxiv.org/abs/2110.15958

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010.

598


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Affiliation Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	----------
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	No Other Manuscripts by the Authors
	----------

