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Abstract — In this work, a deep learning space mapping 

technique has been developed to enable standard compact models 

to account for sporadic trapping effects in AlGaN/GaN high 

electron mobility transistors (HEMTs). In the proposed 

technique, an artificial neural network (ANN) is used to map the 

input feature space spanning the geometrical, material, bias, and 

trap-related parameters of a rigorous physics-based model (fine 

model) of the HEMT to the input feature space of a compact 

model (coarse model). Consequently, the space mapping 

augmented compact model is able to retain the high 

computational efficiency of the standard compact model while 

gaining the capacity to account for the effects of interface and 

bulk traps in the HEMT responses from DC to millimeter wave 

frequencies. In this work, the compact model considered is the 

industry standard advanced SPICE model for GaN HEMTs 

(ASM-HEMT). 

Keywords — Admittance parameters, artificial neural 

networks, bulk and interface traps, compact model, coarse 
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I. INTRODUCTION 

AlGaN/GaN high electron mobility transistors (HEMTs) 

play a vital role in modern wireless communication and radar 

systems because of their attractive properties such as high 

output power density in mm-wave frequency band, high 

chemical/mechanical/thermal stability, and high voltage 

withstanding capacity. GaN HEMTs are commonly used in 

numerous nonlinear radio frequency (RF) circuits, such as 

power amplifiers, mixers, and oscillators [1]. However, these 

devices exhibit strong trapping/de-trapping effects, which 

significantly degrade the circuit performance at mm-wave 

frequencies. Hence, there is an urgent need to develop 

accurate but efficient compact models that can capture the 

performance degradation of HEMT devices from DC all the 

way to mm-wave frequencies due to multiple traps in the 

different device locations (bulk traps and interface traps).  

Unfortunately, standard physics-based compact models 

such as the Advanced SPICE Model for GaN HEMTs (ASM-

HEMTs) and MIT virtual source GaN HEMT (MVSG) do not 

account for trapping effects in the device [2], [3]. In contrast, 

technology computer-aided design (TCAD) simulations 

effectively evaluate trapping/de-trapping effects over a vast 

trap variability albeit at massive computational time costs. 

Therefore, existing compact models are forced to iteratively 

tune their input parameters to best fit the GaN HEMT 

responses obtained from the TCAD simulations. In this way, 

the compact models can indirectly account for sporadic 

trapping/de-trapping effects. However, this approach is highly 

labor-intensive and time-consuming. In recent years, machine 

learning (ML) has emerged as a promising alternative in the 

fast quantification of electronic devices [4], [5]. Several 

reports have demonstrated that ML-based surrogate models 

can faithfully emulate the performance of intrinsic field effect 

transistor devices as analytic functions of the geometrical, 

physical, material, bias, and trap-related parameters [5].  
 

 

Fig. 1. Schematic of GaN HEMT with bulk and interface traps for DC and 
small signal Y-parameter analysis. 

In this work, a deep learning space mapping technique is 

developed to incorporate TCAD-evaluated trapping/de-

trapping effects of GaN HEMTs into any standard compact 

model framework. To that end, first, a TCAD model (fine 

model) is developed that is able to evaluate the effect of 

interface and bulk traps with different trap locations from the 

valance band (VB) and conduction band (CB). Such a 

capability is absent in standard compact models (e.g., the 

ASM-HEMT compact model). Thereafter, a space mapping 

artificial neural network (ANN) is used to map the 

geometrical, material, bias, and trap-related parameters or 

features of the fine model to the input parameter or features of 

the compact model (coarse model) [6], [7] such that the error 

between the device responses obtained from the fine and 

coarse models are minimized. Consequently, the space 

mapping augmented compact model will now be able to 

predict the advanced trap-related effects on the large signal 

current-voltage (I-V) characteristics and small signal 

admittance (Y) parameters of GaN HEMTs without 

compromising on their inherent computational efficiency. The 

proposed method is generic enough to be used for any 

compact model. It also does not require access to or altering 
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the compact model in any way. All features, functionalities, 

and flexibility of the industry-standard compact model are 

retained, and this allows perfect backward compatibility. 

II. DEVELOPMENT OF DEEP LEARNING SPACE MAPPING 

AUGMENTED COMPACT MODEL 

A. Problem Statement 

Consider an AlGaN/GaN HEMT device as shown in Fig. 1 

where bulk traps are present in the GaN buffer layer and 

interface traps are present at the passivation dielectric/AlGaN 

interface [8]. The performance of this HEMT device will be 

studied within an N-dimensional input parameter space where 

the variability in each of the N device parameters of interest 

(pi) is expressed as  
 

,min ,max ,max ,min
; 1

2 2

i i i i
i i
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p i Nλ

+ −   
= + ≤ ≤   
   

    (1) 

 
In (1), [pi,min, pi,max] is the interval of support for the i-th 

parameter and λi is an uniformly distributed random variable 

lying the range [-1, 1]. Let the device terminal characteristics 

of interest be described as X(λ) where X can refer to either DC 

large-signal characteristics or small-signal Y-parameters and λ 

= [λ1, λ2, …, λN]. Now, when predicting the device terminal 

characteristics, X(λ), for different values of λ (i.e., different 

values of the device parameters), repeated rigorous physics-

based simulations of a TCAD model (fine model) will be 

required at prohibitively high computational time costs.  
 

 

Fig. 2. Deep space mapping neural network augmented compact model. 

B. Proposed Space Mapping Augmented Compact Model 

In order to shrink the prohibitively high time costs of the 

fine model simulations, standard compact models (coarse 

models) such as the ASM-HEMT model can be used. The 

coarse models emulate the device terminal characteristics as 

analytic functions of the geometrical, material, and bias 

parameters [2]. Hence, the coarse models can predict the 

device terminal characteristics at significantly smaller time 

costs than the fine model. Let the parametric variability in the 

fine model of (1) be mirrored in the coarse model using M 

input parameters. These input parameters are described as 
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where [qj,min, qj,max] is the interval of support for the j-th 

parameter and ξj is the uniformly distributed random variable 

lying in the range [-1, 1]. The corresponding device terminal 

characteristics predicted by the coarse model is given as Y(ξ) 

where ξ = [ξ1, ξ2, …, ξM]. The main limitation of existing 

coarse models is that they are unable to capture the sporadic 

trapping/de-trapping effects in HEMT devices at different 

locations and hence, lack the necessary level of model fidelity. 

In this paper, a space mapping approach is proposed to 

incorporate the fine model-evaluated trapping/de-trapping 

effects of GaN HEMTs into the coarse model frameworks. 

The block diagram describing this approach is provided in Fig. 

2. It is seen from Fig. 2 that there exists a nonlinear mapping 

from the input parameters of the fine model to that of the 

coarse model given as   
 

( )f=ξ λ                                      (3) 

The objective of the proposed space mapping approach is to 

identify the mapping function of (3) such that the error 

between the device terminal characteristics predicted by the 

coarse and fine models is minimized. In this paper, the 

mapping function of (3) is identified using a deep ANN, this 

ANN is referred to as the space mapping ANN. 

Table 1. Fine model parameters for DC/small signal Y-parameter with 
uniform variability embedded within the GaN HEMT  

Device Parameters Range 

Nsurf (donor trap density at interface) 1.2×1013 cm-2 ± 10% 

NBT (acceptor trap density in GaN 

bulk) 
5×1017 cm-3 ± 10% 

ED,trap (donor trap level) 0.4 eV ± 10% 

EA,trap (acceptor trap level) 0.4 eV ± 10% 

x (Al mole fraction) 0.25 ± 10% 

Lg (gate length)  0.7 μm ± 10% 

Lgs (gate to source length) 0.7 μm ± 10% 

Lgd (gate to drain length) 2 μm ± 10% 

Vgs (gate to source voltage) [-5 - 0] V  

Vds (drain to source voltage) [0 - 10] V 

Frequency [0.5 - 50] GHz 

 

C. Training the Space Mapping ANN  

In order to train the deep space mapping ANN, a dataset 

consisting of K data points described as ( ) ( )
1{ , ( ))}

k k K
kX =λ λ  is 

used. In the dataset, λ(k) = [λ1
(k), λ2

(k),…, λN
(k)] are the values of 

the input parameters to the fine model for the k-th data point. 

The result of the fine model for the k-th data point, X(λ(k)), is 

extracted from a TCAD simulation. Let the predicted output of 

the space mapping ANN for each data point, λ(k) be equal to 

z(w, b, λ(k)) where (w, b) are the set of weights and bias terms 

in the ANN. The loss function of the ANN is the mean square 

error between the results of the fine and coarse models at the 

training data points expressed as 
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2

( ) ( )

1

1
( ) ( ( , , ))

K
k k

loss

k

F X Y z
K

λ w b λ

=

= −            (5) 

 
Next, the space mapping ANN will tune the set of weights and 

bias terms (w, b) to solve the optimization problem 
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Once the space mapping ANN is trained, the combination 

of this ANN and the compact model of Fig. 2 forms the space 

mapping augmented compact model. The value of this 

augmented compact model is that it can emulate the device 

terminal characteristics obtained from the fine model in the 

presence of advanced trapping/de-trapping effects with 

minimal computational overheads. 

Table 2. Coarse model parameters for DC/small signal Y-parameter with 

uniform variability embedded within the device 

 

 

Fig. 3. RMS testing error decay with increasing number of training points for 

(a) drain current, and (b) Y-parameters which is averaged across all Y-
parameters.                               

III. RESULTS AND DISCUSSION 

In this section, the AlGaN/GaN HEMT structure of Fig. 1 

is considered. The variability in the input parameter space for 

fine and coarse models is provided in Table 1 and 2 

respectively. The device terminal characteristics of interest are 

the DC I-V characteristics and small signal Y- parameters in 

the bandwidth [0.5-50] GHz. For accuracy analysis, the above 

device characteristics are predicted by the fine model 

(Sentaurus TCAD), coarse model (ASM-HEMT), and the 

proposed space mapping augmented coarse model described 

in Section II.  

The proposed space mapping ANN uses a training dataset 

of K = {200, 400, 600, 800, 1000, 1200, 1400, 1600} Latin 

hypercube sampling points and a common testing dataset of 

1000 points. Moreover, it uses three hidden layers of 100 

neurons each, the Adam optimizer, and the ReLU activation 

function for training. The decay of the root mean square (RMS) 

testing error for the drain current (ID) using proposed approach 

with the increasing number of training points is shown in Fig. 

3 (a). A total of 1015 training points and 200 epochs are 

required to achieve a prescribed testing error tolerance of 0.12, 

as observed in Fig 3(a). The predictive accuracy of the space 

mapping augmented compact model compared to that of the 

standard compact model is illustrated using the scatter plot of 

Fig. 4(a). Fig. 4(a) also clearly demonstrates the inaccuracy in 

the standard coarse model arising from its inability to account 

for the bulk and interface traps. For further accuracy analysis, 

the variation of drain current with drain-to-source voltage (Vds) 

and the gate-to-source voltage (Vgs) at different points in the 

input parameter space using all three models of above is 

displayed in Fig. 5. 
  

 
Fig. 4. Scatter plot showing the accuracy of the proposed space mapping 

augmented compact model and the standard compact model (a) drain current 

using 1015 training samples (b) imaginary part of Y21 using 985 training 
samples at 1000 testing points. 

 

 

Fig. 5. Validation of drain current (ID) with respect to (a) gate voltage (VG), 
and (b) drain voltage (VD) for TCAD, compact model, and proposed approach 

evaluated at distinct input space. 

For the device Y-parameters, the same space mapping ANN 

architecture and training approach as above is used with the 

only difference being that frequency is now an added input. 

The decay of the RMS testing error averaged across all Y-

parameters for the proposed approach with the increasing 

number of training points is shown in Fig. 3(b). It is noted 

Device Parameters Range 

VOFF (cut-off voltage)  -3 V ± 10% 

U0 (low field mobility)  2.5 m2/V-s ± 10% 

VSAT (saturation velocity)  112760 m/s ± 10% 

Vsataccs (saturation velocity for access 

region) 
406610 cm/s ± 10% 

η0 (DIBL parameter) 2.08 ± 10% 

NFACTOR (subthreshold slope factor) 4.75 ± 10% 

THESAT (velocity saturation 

parameter) 
5.93 V-2 ± 10% 

Lg (gate length)  0.7 μm ± 10% 

Lgs (gate to source length) 0.7 μm ± 10% 

Lgd (gate to drain length) 2 μm ± 10% 

Vgs (gate to source voltage) [-5 - 0] V 

Vds (drain to source voltage) [0 - 10] V 

Frequency [0.5 - 50] GHz 
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from Fig. 3(b) that a total of 985 training points and 200 

epochs are sufficient to achieve a prescribed testing error 

tolerance of 0.019. The predictive accuracy of the space 

mapping augmented compact model compared to that of the 

standard compact model is illustrated using the scatter plot of 

Fig. 4(b). Finally, in Fig. 6, the variation of the small signal 

admittance parameters Y11 and Y21 with frequency for 

different points in the input parameter space using all three 

models above is displayed. It is clear from Fig. 6 that the 

proposed space mapping augmented coarse model is able to 

match the accuracy of the fine model even though the standard 

coarse model cannot. 

Finally, in Table 3, the incurred time cost of all the three 

models of above for predicting the device terminal 

characteristics is recorded. It is concluded from Table 3, and 

Figs. 3-6, that the proposed space mapping augmented 

compact model retains the high computational efficiency of 

the standard coarse model while matching the accuracy of the 

fine model. In fact, the proposed space mapping augmented 

compact model adds a miniscule 1.3 milliseconds to the 

execution time of the standard compact model while 

substantially the accuracy is improved significantly by using 

the proposed approach. In effect, the space mapping 

augmented coarse model can include the effects of the bulk 

and interface traps at virtually negligible run-time costs. Of 

course, training the space mapping ANN requires additional 

time cost. However, this cost is a one-time cost unlike the fine 

model where the time cost is multiplied by the number of 

observation points in the input parametric space (usually in the 

order of thousands). 
 

  

Fig. 6. Validation of small-signal admittance parameters (a) Y11, and (b) Y21 

for TCAD, compact model, and proposed method.  

IV. CONCLUSION 

In this paper, a deep learning space mapping technique is 

developed to enhance the capabilities of standard compact 

models (e.g., the ASM-HEMT model) to accurately predict 

the effects of bulk and interface traps on the device terminal 

characteristics. In particular, a space mapping ANN is 

combined with the compact model to ensure that by simply 

pre-processing the input parameter space of the compact 

model, it will be able to match the accuracy of a rigorous 

physics-based fine model when considering advanced 

trapping/de-trapping effects in GaN HEMTS at minimal loss 

of computational efficiency. 
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Table 3. The incurred computational cost for device terminal performance 

Models RMS error w.r.t. 

TCAD 

Standard deviation of error 

w.r.t. TCAD 

Execution time 

(Time for a single device 

characteristic evaluation) 

Speedup w.r.t. 

TCAD 

ID Y-parameter ID Y-parameter 

TCAD - - - - 180 sec - 

Compact model 0.2518 0.2548 12.7 ⅹ 10-3 2.1 ⅹ 10-3 4 msec 45,000 

Proposed  0.1806 0.1287 8.4 ⅹ 10-3 0.9 ⅹ 10-3 5.3 msec 33,962 
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