
Constrained Gaussian Process for Signal Integrity applications using
Variational Inference

Abstract — Surrogate modeling with Gaussian Process is
effective for problems where data is expensive to query. By
construction, a vanilla Gaussian Process model uses a Gaussian
likelihood whose support is R. This means the resulted model
could generate non-physical values in certain cases. For instance,
a negative-valued eye height in high-speed channel simulation can
be generated. In this paper, a beta likelihood is used to enforce
the non-negative constraint of the underlying mapping. Due to
the non-Gaussian likelihood, the regression model is no longer
analytical, the posterior is intractable and approximated using
variational Bayesian inference. A channel simulation example
is used to demonstrate that the approximate Gaussian Process
approach successfully avoids generating negative eye heights
when used in a Monte-Carlo simulation.

Keywords — Gaussian Process, Variational Inference,
High-speed Channel simulation, Signal Integrity, Surrogate
modeling

I. INTRODUCTION

A Gaussian Process (GP) [1] is a stochastic process, any
finite number of samples of which follow a multi-dimensional
Gaussian distribution. In [2], [3], exact GPs have been
introduced and used as surrogate models for different
applications such as RF microwave filter and digital high-speed
link. Since exact GPs assume a Gaussian noise model, the
marginal likelihood is also Gaussian, the predictive distribution
can be obtained analytically. For problems where the output
values are far away from non-physical values such as modeling
the bandpass filter in [2], there is little concern for non-physical
values generated by the GPs. However, for problems such as
eye diagram prediction in channel simulations, the eye width
and eye height are bounded between zero and a maximum
value, the chance of getting values violating these bounds
are much more significant and could be problematic for
Monte-Carlo simulations done on the surrogate model. One
remedy to resolve the non-physical values when sampling
from the surrogate model is to discard them from the sample
pool before doing any statistical analysis. In this paper, as
another remedy for this problem, we propose to enforce
bound constraints by using the beta likelihood. Since the beta
likelihood is not conjugate to Gaussian prior, the posterior
distribution is intractable and must be approximated. We
choose to implement the approximation using variational
Bayes.

The paper is structured as follows: Section II reviews the
theory of GP in Bayesian framework and variational Bayes
theory. Section III presents an example where a constrained

GP was used to predict the eye height of a high-speed link.
Compared with the original GP, the constrained GP used in
this example generates output values that are well bounded
as intended, Section IV discusses the result and potential
extension of this work.

II. VARIATIONAL INFERENCE FOR GAUSSIAN PROCESS
REGRESSION

A. Gaussian Process Regression (GPR)

In exact single-output GP regression, given a set
of data D =

{(
x(i), y(i)

)
, i = 1, 2, ..., N

}
of N pairs

of d−dimensional vector-valued input x(i) ∈ Rd and
function-valued output y(i) ∈ Y ⊂ R such that:

y = f (x) + ϵ (1)

where ϵ ∼ N
(
0, σ2

)
is the Gaussian observation noise, GP

makes prediction, y∗, on a test point x∗ by sampling from the
posterior

p (y∗|x∗,D) =

∫
θ

p (y∗|x∗,θ) p (θ| D) dθ (2)

where θ is the hyper-parameter vector. The hyper-parameter
posterior is given by Bayes’ rule

p (θ| D) =
p (D|θ) p (θ)∫

θ

p (D|θ) p (θ)dθ
(3)

In implementations, the denominator of (3), a.k.a the
evidence, is the biggest challenge. It is often a high
dimensional integral, hence, intractable. For exact GPs, (3) was
never calculated, because everything was assumed Gaussian,
the analytical form of p (θ| D) is given by [1], [2]

p (y∗|x∗,D) = N (µ∗,Σ∗) (4)

where
µ∗ = Ktr

(
Krr + σ2I

)−1
y (4a)

Σ∗ = Ktt −Ktr

(
Krr + σ2I

)−1
Ktr (4b)

Ktt, Ktr and Krr are the kernel matrices whose i, j-th
element is calculated by evaluating a kernel function, k (·, ·) :
Rd → R, using 2 data points, K(ij) = k

(
x(i),x(j)

)
. The

subscript t stands for test data while r stands for training data.
The first and second subscript in a kernel matrix indicate which
data set the ith and jth data point come from, respectively.
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Popular kernel functions can be found in [1], [4]. The marginal
likelihood

p (D|θ) =
N∏
i=1

p
(
y(i)
∣∣∣x,θ) (5)

is maximized to find the hyper-parameters of the GP.

B. Variational Inference with non-Gaussian GP

In probabilistic modeling, when a likelihood function is
non-analytical, approximation methods are needed to arrive at
the solution for the hyper-parameter learning. The work in [5]
proposes to use variational inference (VI) as an alternative
for traditional approximation algorithms such as expected
maximization. Let q be a variational distribution [5], [6]. In
the following, subscript ∗ refers to the predictive points. The
log-likelihood of the GP prediction is

log p (y∗|θ) = log

∫
p (y∗,f∗|θ) df∗

≥
∫

q (f∗) log
p (y∗,f∗|θ)

q (f∗)
df∗ (6)

Let

L (θ) =

∫
q (f∗) log

p (y∗,f∗|θ)
q (f∗)

df∗ (7)

be the lower bound of log p (y|θ). L (θ) can be further
rewritten as

L (θ) =

∫
q (f∗) log

[
p (y∗|θ)

p (f∗|y∗,θ)

q (f∗)

]
df∗ (7a)

= log p (y∗|θ)
∫

q (f∗) df∗

+

∫
q (f∗) log

p (f |y∗,θ)

q (f∗)
df∗ (7b)

= log p (y∗|θ)−KL (q (f∗)∥ p (f∗|y∗,θ)) (7c)

where

KL (q (f∗)∥ p (f∗|y∗,θ)) = −
∫

q (f∗) log
p (f∗|y∗,θ)

q (f)
df

(7d)
is the Kullback-Leibler (KL) divergence between q and p, a
non-negative quantity, which measures the difference between
q (f∗) and p (f∗|y∗,θ). Since KL (q (f∗)∥ p (f∗|y∗,θ)) ≥
0. It is clear that log p (y|θ)≥ L (θ) ∀θ. Minimizing
KL (q (f∗)∥ p (f∗|y∗,θ)) is same as minizing the gap
between the true posterior and q, subsequently making q the
best approximation for the true posterior. Using the result from
[7]

q (f∗) = N (f∗|m,S) (8)

where m ∈ RN and S ∈ RN×N are called the variational
parameters and are learnt during the training along with other
hyper-parameters of the original GP kernel. In this paper,
VI is implemented by Pyro [8], a probabilistic programming
framework written in Python. Gradient calculations for the
optimization process in Pyro are handled by automatic
differentiation which is an advantage by saving time and effort
to manually derive the gradient for each different function.

This allows prototyping to happen much faster. Different
model forms and distribution functions can be mixed and
matched to create the best model.

In this paper, we will be using the scaled rational basis
function (RBF) kernel for any GP models

k (x,x′) = η exp

(
∥x− x′∥22

2ℓ2

)
(9)

where η and ℓ are kernel hyper-parameters. We use a
beta distribution for the noise model to enforce the bound
constraint. A beta distribution of a random variable 0 < z < 1
is parameterized by the shape parameters, α > 0 and β > 0,
given by

p (z|α, β) = Beta (α, β) =
Γ (α+ β)

Γ (α) Γ (β)
zα−1 (1− z)

β−1

(10)
where Γ (n) = (n− 1)! for n ∈ Z+ is the gamma function.
Figure 1 shows the probability density function (pdf) of the
beta distribution with different values of α and β. It can be
seen that a beta distribution with α = β = 2 or α = 2,
β = 5 can be a good candidate for the noise model of GPs
and maintain the bound constraint on the output value.

Fig. 1. Beta distribution parameterized by α and β.

There are two minor tweaks that need to be done
so that (10) can be used in GP regression. First, since
z is bounded between 0 and 1, the data needs to be
normalized into this interval as well. This is trivial because
normalization is often done as a pre-processing step to increase
numerical stability for most regression algorithms anyway.
As normalization is a bijective operation, i.e. it has perfect
one-to-one correspondence between the actual data and the
normalized values, it does not affect the meaning of the
mapping between the input and output that needs to be learnt.
Second, to link the noiseless GP, f , to (10), we define

α = σsig (f) s, β = (1− σsig (f)) s (11)

where σsig (·) is the sigmoid function and s > 0 is a scaling
factor. The main purpose of using σsig (·) is to convert f from
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R into (0, 1). With α, β defined in (11), their domain is still
(0,∞) yet f can affect them and they can be infered during
the minimization of the ELBO, i.e. α, β are included in θ
above. In brief, for exact GPs, the likelihood of the data is
given by

p (y| f) = N
(
f, σ2

)
(12)

while for bounded GP, the likelihood is

p (y| f) = Beta (σsig (f) s, (1− σsig (f)) s) (13)

III. EXAMPLE

In this section, we present a familiar example of
predicting the eye height of a high-speed channel. The
channel is a die-to-die, coupled strip-line configuration on both
(transmitter, TX, and receiver, RX) sides, built on an organic
interposer. The link includes various micro-vias transitioning
between different layers in an embedded bridge [9]. The inputs
are the geometry of the link and the output is particularly
the eye height. Equalizations are enabled on both sides;
equalization settings are also one of the inputs. Figure 2
conceptualizes the setup. The output node labelled VRO is
where the eye diagram is measured and used as the output
for the regression model.

Fig. 2. Conceptual channel simulation setup

As shown in [3], GP models under full Bayesian learning
can converge with much fewer number of samples compared
to other surrogate models. In this example, following the
observation in [3] regarding the number of samples needed
to train a GP, only a set of N = 50 samples were uniformly
selected to train the GP models. Both exact and bounded GP
use scaled RBF kernel as desribed in (9). Adam [10] is used as
the optimizer. The same starting learning rate of 0.01 is used
for both models to ensure fair comparison.

Fig. 3. Normalized training error

The training was done through 10,000 epoch until both
models converge although the exact GP model converges

long before the bound constrained GP did as shown in
Figure 3. It is worth noting that the training errors shown
in Figure 3 have been normalized to themselves for better
comparison because the two models are derived from different
probability distributions and the ELBO absolute values are not
a repsentative metric for comparison.

Figure 4 shows the test results from two models compared
to that from Monte-Carlo sampling. The eye height values
have been normalized to the signal voltage swing, denoted
by ȳ. Not only the bounded GP gives better prediction, its
predictions also stay within the bound. The exact GP model
generates many values that are negative and larger than the
voltage swing (ȳ > 1) which both violate the physical meaning
of the predicted eye height.

Fig. 4. Predictions from 2 GP models vs. true distribution

IV. CONCLUSION

To enforce physical constraints on GPR models, it is
necessary to use a non-Gaussian likelihood such as the beta
likelihood for GPs that generate bounded output values. This
paper formulates GPR in the variational framework based
on a similar work for classification problems [7] to handle
the analytically intractability from using a non-Gaussian
likelihood. The algorithm is verified on a high-speed die-to-die
channel design. The vanilla exact GP [3] was trained along
with the bounded GP presented in this paper with the same
training data and training conditions. The result shows that the
bounded GP outperforms the exact GP in accuracy and upholds
the bound contraint well. The only trade-off is a longer training
time for bounded GP. However, due to small training dataset,
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the increase in training time is still well acceptable. The model
is trained within a few minutes only.

For multi-output systems, multi-output GP should be used
instead of multiple single-output GPs for faster convergence.
A multi-output GP formulation extension of this work is
underway and will be presented in future work along
with more examples in both power signal integrity and
RF/microwave applications.
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