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Abstract—A novel temporal-spatial equivalent virtual array 
technique for accurate vital sign monitoring based on a 24GHz 
continuous wave (CW) radar is proposed. By leveraging the 
similarity between the single-input-single-output (SISO) CW 
radar single-channel phase signal and the single-input-multiple-
output (SIMO) radar multiply-array signal, an equivalent virtual 
array could be synthesized, which completes the transformation 
from time to space. The derivation of the equivalent theory 
reveals that the different frequency components of human thorax 
surface motion can be equivalent to different direction-of-arrival 
(DOA) angles of waves incident on the virtual array. Subspace-
based DOA estimation algorithm is employed to extract the array 
features and a super-resolution spectral estimation performance 
is achieved. A coarse-to-fine estimation method is presented for 
accurate heart rate and respiration rate monitoring. Experiments 
were carried out and the results proved that the proposed 
technique can accurately and stably estimate the respiration rate 
and heart rate of the human body with super-resolution. 

Keywords—CW radar, millimeter-wave, radar sensing, virtual 
array, vital sign monitoring. 

I. INTRODUCTION 
In recent years, non-contact vital sign monitoring has 

attracted people’s attention in many fields, such as sleep 
monitoring, hospital physical examination, auxiliary early 
warning in nursing institutions, and measurement of the health 
status of the elderly living alone [1]. Since vital sign signal 
can be obtained without physical contact, this method is more 
user-friendly and leverages more convenience to users. 

Conventional non-contact vital sign monitoring methods 
mainly include camera-based solutions and millimetre-wave 
radar-based solutions. Camera-based solutions are limited by 
lighting conditions and privacy risks, which make it difficult 
to guarantee the accuracy and consistency of vital sign 
detection. Many studies have been conducted regarding the 
radar-based vital sign detection. Basically, vital sign detection 
can be formulated as a spectrum estimation problem. The most 
popular method at present is the discrete Fourier transform 
(DFT) and the time domain feature extraction method [2-4]. 
However, the spectral leakage and resolution limitation caused 
by sample data length greatly reduce the accuracy of DFT. In 
addition, since the amplitude of chest displacement caused by 
respiration is much stronger than that caused by heartbeat, the 
heartbeat signal can be easily overwhelmed by the third or 
fourth harmonic of the respiration in frequency spectrum [5]. 

In this paper, a novel vital sign monitoring technique with 
super-resolution is presented based on a signal channel CW 
radar. The temporal-spatial equivalent virtual array (TSEVA) 
principle is derived and the TSEVA-based respiration rate and  
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Fig. 1. Schematic diagram of the temporal-spatial equivalent virtual array 
technique. 

heart rate monitoring method is proposed. As is shown in Fig. 
1, the equivalence is divided into two levels, namely the array 
level and the signal feature level. The derivation of the 
equivalence theory and the detailed specification of the 
technique will be covered in the rest part of the paper. 

II. PRINCIPLES  

A. Temporal-Spatial Equivalent Virtual Array Theory 
The proposed technique is based on a single channel CW 

radar and the system block diagram of the radar sensor is 
shown in Fig. 2. The electromagnetic wave is emitted by Tx 
antenna, and the echo with the human chest movement 
information is received by Rx antenna after being reflected. A 
DC-coupled architecture is employed to amplify two mutually 
orthogonal I/Q channels IF signals. The complex form of the 
IF signal recombined from I/Q channels can be expressed as  

 

𝑋𝑋𝐼𝐼𝐼𝐼(𝑡𝑡) = 𝐴𝐴𝐼𝐼𝐼𝐼 ⋅ exp �𝑗𝑗 �
4𝜋𝜋
𝜆𝜆
�𝑑𝑑0 + 𝑑𝑑(𝑡𝑡)� + ∆𝜃𝜃(𝑡𝑡)�� ,   (1) 

 
where 𝐴𝐴𝐼𝐼𝐼𝐼 is the amplitude of the signal, 𝜆𝜆 is the wavelength,  
𝑑𝑑0 is the initial distance between human and radar, 𝑑𝑑(𝑡𝑡) is the 
displacement of the thorax surface and ∆𝜃𝜃(𝑡𝑡) is the residual 
phase. The displacement of the human thorax surface 𝑑𝑑(𝑡𝑡) is 
mainly produced by the breathing action of the lungs, the 
beating of the heart, and the accumulation of a series of 
harmonics of cardiopulmonary activities: 
 

𝑑𝑑(𝑡𝑡) = �𝐴𝐴𝑖𝑖 ⋅ exp[ 𝑗𝑗(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝜑𝜑𝑖𝑖)]
𝑃𝑃

𝑖𝑖=1

,                 (2) 

 
where 𝑃𝑃 is the number of all frequency components, 𝐴𝐴𝑖𝑖/𝜔𝜔𝑖𝑖/𝜑𝜑𝑖𝑖 
are the amplitude, angular frequency and the initial phase of  
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Fig. 2. Block diagram (a) and the photo (b) of the SIMO CW radar system. 
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Fig. 3.  Schematic diagram of the data segmental reconstruction procedure. 

the i-th frequency component, respectively. The MDACM 
algorithm is employed to demodulate the phase information in 
(5), which can be expressed as: Φ(𝑡𝑡) = 𝑑𝑑(𝑡𝑡) + 𝑛𝑛(𝑡𝑡), where 
𝑛𝑛(𝑡𝑡) is the additive white Gaussian noise caused by residual 
phase, environmental clutter, and other types of noise 
introduced from the circuit and sampling process. Denote the 
observation time applied for vital sign signal extraction as 𝛵𝛵𝑂𝑂𝐼𝐼 , 
A total of 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 points of data are sampled with the sampling 
rate 𝑓𝑓𝑠𝑠, where 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛵𝛵𝑂𝑂𝐼𝐼 × 𝑓𝑓𝑠𝑠. 

A data segmental reconstruction procedure is performed to 
transform the temporal single-channel Φ(𝑡𝑡) signal into spatial 
multiple virtual array channel signals, and the schematic 
diagram of the procedure is shown in Figure 3. The single 
channel data Φ(𝑡𝑡) is divided into 𝑀𝑀 segments with data length 
𝐾𝐾, and the data matrix of each segment can be regarded as the 
received data of each receiving element in the virtual array:   

χ𝑖𝑖(𝑡𝑡) = Φ(𝑡𝑡 − (𝑖𝑖 − 1)𝐾𝐾𝑡𝑡𝑠𝑠),                       (3)  
where χ𝑖𝑖(𝑡𝑡) is the data of the i-th virtual array, 𝑡𝑡𝑠𝑠 = 1/𝑓𝑓𝑠𝑠  is 
sampling interval. The received data of the whole virtual array 
can be organized as:  

𝝌𝝌(𝑡𝑡) = �

χ1(𝑡𝑡)
χ2(𝑡𝑡)

…
χ𝑀𝑀(𝑡𝑡)

� = 𝐴𝐴(𝜔𝜔)𝑆𝑆(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)                                     

                    = �

1
𝑒𝑒𝑗𝑗𝜔𝜔1𝐾𝐾𝑇𝑇𝑠𝑠

…
𝑒𝑒𝑗𝑗(𝑀𝑀−1)𝜔𝜔1𝐾𝐾𝑇𝑇𝑠𝑠

1
𝑒𝑒𝑗𝑗𝜔𝜔2𝐾𝐾𝑇𝑇𝑠𝑠

…
  𝑒𝑒𝑗𝑗(𝑀𝑀−1)𝜔𝜔2𝐾𝐾𝑇𝑇𝑠𝑠

  …  
  …  
  …  
  …  

1
𝑒𝑒𝑗𝑗𝜔𝜔𝑃𝑃𝐾𝐾𝑇𝑇𝑠𝑠

…
𝑒𝑒𝑗𝑗(𝑀𝑀−1)𝜔𝜔𝑃𝑃𝐾𝐾𝑇𝑇𝑠𝑠

� 

                     ×

⎣
⎢
⎢
⎡𝐴𝐴1𝑒𝑒

𝑗𝑗(𝜔𝜔1𝑇𝑇+𝜑𝜑1)

𝐴𝐴2𝑒𝑒𝑗𝑗(𝜔𝜔2𝑇𝑇+𝜑𝜑2)

…
𝐴𝐴𝑃𝑃𝑒𝑒𝑗𝑗(𝜔𝜔𝑃𝑃𝑇𝑇+𝜑𝜑𝑃𝑃)⎦

⎥
⎥
⎤

+ �

𝑛𝑛(𝑡𝑡)
𝑛𝑛(𝑡𝑡 − 𝐾𝐾𝑡𝑡𝑠𝑠)

…
𝑛𝑛(𝑡𝑡 − (𝑀𝑀 − 1)𝐾𝐾𝑡𝑡𝑠𝑠)

�         (4) 

 
where 𝐴𝐴(𝜔𝜔) = [𝑎𝑎(𝜔𝜔1), 𝑎𝑎(𝜔𝜔2), … , 𝑎𝑎(𝜔𝜔𝑃𝑃)] stands for the array 
manifold vector, 𝑎𝑎(𝜔𝜔𝑖𝑖) = �1, 𝑒𝑒𝑗𝑗𝜔𝜔𝑖𝑖𝐾𝐾𝑇𝑇𝑠𝑠 , … , 𝑒𝑒𝑗𝑗(𝑀𝑀−1)𝜔𝜔𝑖𝑖𝐾𝐾𝑇𝑇𝑠𝑠�𝑇𝑇  is the 
steering vector of 𝜔𝜔𝑖𝑖 , 𝑆𝑆(𝑡𝑡) = [𝑠𝑠1(𝑡𝑡), 𝑠𝑠2(𝑡𝑡), … , 𝑠𝑠𝑃𝑃(𝑡𝑡)]𝑇𝑇  is the 
signal vector, and 𝑠𝑠𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑖𝑖𝑒𝑒𝑗𝑗(𝜔𝜔𝑖𝑖𝑇𝑇+𝜑𝜑𝑖𝑖) is the signal of the i-th  
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Fig. 4.  Flow chart of the TSEVA-based vital sign monitoring method. 

frequency component.  
After the above processing, a temporal-spatial equivalent 

virtual array signal is generated. Considering a uniform linear 
array (ULA) of 𝑀𝑀 elements with a spacing of 𝑑𝑑, assuming that 
there are 𝑃𝑃 signals incident on the array with different DOA 
angles, the overall received signal 𝑿𝑿(𝑡𝑡) can be expressed as:  
𝑿𝑿(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑀𝑀(𝑡𝑡)]𝑇𝑇 = 𝐴𝐴′(𝜃𝜃)𝑆𝑆′(𝑡𝑡) + 𝑁𝑁′(𝑡𝑡)  (5)  
where 𝑥𝑥𝑖𝑖(𝑡𝑡) is the received signal of the i-th element, 𝐴𝐴′(𝜃𝜃) =
[𝑎𝑎′(𝜃𝜃1), 𝑎𝑎′(𝜃𝜃2), … , 𝑎𝑎′(𝜃𝜃𝑃𝑃)]  is the array manifold vector and 
𝑎𝑎′(𝜃𝜃𝑖𝑖) = �1, 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋sin𝜃𝜃𝑖𝑖/𝜆𝜆 , … , 𝑒𝑒𝑗𝑗(𝑀𝑀−1)2𝜋𝜋𝜋𝜋sin𝜃𝜃𝑖𝑖/𝜆𝜆�𝑇𝑇 is the steering 
vector of DOA angle 𝜃𝜃𝑖𝑖, 𝑆𝑆′(𝑡𝑡) = [𝑠𝑠1′(𝑡𝑡), 𝑠𝑠2′(𝑡𝑡), … , 𝑠𝑠𝑃𝑃′(𝑡𝑡)]𝑇𝑇 is 
the signal source matrix and 𝑁𝑁′(𝑡𝑡) stands for the white noise. 

It can be concluded that the received signal of the 𝑀𝑀 
element ULA is very similar to the signal of the temporal-
spatial equivalent virtual array through the comparison 
between (4) and (5). Let 𝐴𝐴(𝜔𝜔)  be equal to 𝐴𝐴′(𝜃𝜃) , the 
equivalent condition can be obtained as 𝑎𝑎(𝜔𝜔𝑖𝑖) = 𝑎𝑎′(𝜃𝜃𝑖𝑖):  

𝑒𝑒𝑗𝑗𝜔𝜔𝑖𝑖𝐾𝐾𝑇𝑇𝑠𝑠 = 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋sin𝜃𝜃𝑖𝑖/𝜆𝜆                            (6)  
The above equation can be further simplified when the 

element spacing 𝑑𝑑 = 𝜆𝜆/2. Then, the relationship between the 
motion frequency 𝑓𝑓𝑖𝑖 and the incoming wave DOA angle 𝜃𝜃𝑖𝑖 is:  

𝜃𝜃𝑖𝑖 = sin �2𝐾𝐾
𝑓𝑓𝑖𝑖
𝑓𝑓𝑠𝑠
�
−1

.                             (7) 
 

It should be noted that the sin (⋅)  function is more 
sensitive when angle is close to 0, so a large value of 𝐾𝐾 is 
more appropriate for a more accurate estimation 𝑓𝑓𝑖𝑖. However, 
in order to avoid ambiguity when solving angles in (6), there 
is a upper bound for 𝐾𝐾, which is 𝜔𝜔𝑖𝑖𝐾𝐾𝑡𝑡𝑠𝑠 ≤ 𝜋𝜋. In conclusion, 
the number of equivalent linear array elements 𝑀𝑀 = 𝑇𝑇𝑂𝑂𝐼𝐼/𝐾𝐾𝑡𝑡𝑠𝑠, 
the angle of equivalent incident signal 𝜃𝜃𝑖𝑖 = sin(2𝐾𝐾𝑓𝑓𝑖𝑖/𝑓𝑓𝑠𝑠)−1 , 
and the optimal number of each channel’s snapshots 𝐾𝐾 =
⌊ 𝑓𝑓𝑠𝑠/2𝑓𝑓𝑀𝑀𝑇𝑇𝑎𝑎⌋ where 𝑓𝑓𝑀𝑀𝑇𝑇𝑎𝑎 is the maximum frequency in 𝑑𝑑(𝑡𝑡). 

B. TSEVA-based Vital Sign Monitoring 
Since the array generated by TSEVA is a uniform linear 

array, several super-resolution spectrum estimation algorithms 
based on array features can be adopted, such as the estimating 
signal parameters via rotational invariance techniques signal 
parameters via rotational invariance techniques (ESPRIT). 
TLS-ESPRIT algorithm is adopted in this paper in order to 
achieve a high-resolution spectrum estimation result. Divide 
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Fig. 5.  Photograph of the experimental setup. 

the virtual array into two 𝑀𝑀 − 1 elements sub-arrays 𝝌𝝌𝟏𝟏  and 
𝝌𝝌𝟐𝟐 , where 𝝌𝝌𝟏𝟏 = [χ1(𝑡𝑡), χ2(𝑡𝑡), … , χ𝑀𝑀−1(𝑡𝑡)]𝑇𝑇  and 𝝌𝝌𝟐𝟐 =
[χ2(𝑡𝑡), χ3(𝑡𝑡), … , χ𝑀𝑀(𝑡𝑡)]𝑇𝑇 . There is a diagonal matrix 𝜓𝜓  that 
reflects the phase difference between the two subarrays’ 
manifold vector, and the elements on the diagonal of 𝜓𝜓 
represent the frequencies of the individual motion components 
on the thorax surface: 𝜓𝜓 = diag[𝑒𝑒𝑗𝑗𝜔𝜔1𝐾𝐾𝑇𝑇𝑠𝑠 , 𝑒𝑒𝑗𝑗𝜔𝜔2𝐾𝐾𝑇𝑇𝑠𝑠 , … , 𝑒𝑒𝑗𝑗𝜔𝜔𝑃𝑃𝐾𝐾𝑇𝑇𝑠𝑠]. 
By solving the eigenvalues of the covariance matrix of the two 
sub-arrays, the value of the diagonal array 𝜓𝜓 can be finally 
obtained, and thus the frequency components contained in the 
surface displacement of the thorax can be estimated. 

The flow chart of TSEVA-based vital sign monitoring 
method is shown in Fig. 4. The first step is to obtain the phase 
information of a single channel. Next, set 𝐾𝐾 = 1 to obtain the 
largest equivalent array aperture. Due to the small number of 
snapshots, MUSIC algorithm is used for rough spectrum 
estimation to obtain the frequency interval where the heartbeat 
signal is located. Generally, the heart rate of a normal person 
is within the interval [0.1Hz, 0.3Hz]. Therefore, the maximum 
value of the spectrum peak in this interval is considered as a 
rough estimate of the heart rate, and then 𝐾𝐾 is updated and the 
TSEVA signal is generated. In the next step, TLS-ESPRIT 
algorithm is employed to find the frequency corresponding to 
the largest eigenvalue in the heart rate interval as the heart rate 
estimation value 𝑅𝑅ℎ and that in the respiration rate interval as 
the respiration rate estimation value 𝑅𝑅𝑟𝑟. Also, 𝑅𝑅ℎ will be used 
to compare with the historical value of heart rate 𝑅𝑅𝐻𝐻. When 
the difference exceeds 𝜀𝜀 (e.g., 0.1Hz), it is considered that the 
heart rate has changed greatly, and the coarse-fine heart rate 
estimation procedure needs to be restarted. 

III. EXPERIMENTS AND RESULTS 
A custom-designed interferometric radar operating at 

24GHz is employed in the experimental part. The photograph 
of the radar sensor is shown in Fig. 2(b) and the experimental 
setup is shown in Fig. 5. The experiments are conducted in 
office environment.  The people sit in a chair and maintain a 
stable posture, and the distance between the chest and the 
radar is about 1m. The photoplethysmography (PPG) device 
worn on the finger is sampled synchronously with the radar 
signal and it is served as the ground truth. 

DFT and the original MUSIC algorithm was performed to 
make a comparison with the proposed method. Since the 
ESPRIT algorithm directly obtains the frequency values and 
cannot generate a continuous spectrum, a 2000 times Monte-
Carlo simulation is carried out to obtain the distribution of the 
TSEVA-based results and illustrate its spectrum composition. 
Because the PPG signal is a relatively more stable signal with  

 
Fig. 6. Comparison between the results of DFT, original MUSIC algorithm, 
the proposed TSEVA-based method and the ground truth PPG signal. 

 
Fig. 7.  Heart rate estimation results over a 10-minute data. 

high SNR, super-resolution algorithm is performed on it and 
its result is regarded as the ground truth. The comparison of 
the results is shown in Fig. 6, and 𝛵𝛵𝑂𝑂𝐼𝐼 = 10s and 𝑓𝑓𝑠𝑠 = 100Hz. 
Since the frequency resolution of DFT is only 0.1Hz, it cannot 
obtain accurate respiration rate and heart rate. The original 
MUSIC algorithm achieves good performance on respiration 
rate estimation, but it cannot locate the exact frequency peak 
of the heartbeat. The result obtained by the proposed TSEVA-
based method is 0.253Hz for respiration and 1.261Hz for 
heartbeat, which is the same as the result of PPG. 

The heart rate estimation results by different methods for a 
period of 10 minutes data is shown in Fig. 7. Because of the 
resolution limitation, the estimation result of DFT method is 
the worst with a RMSE=5.72. The results obtained by the 
original MUSIC algorithm achieve good accuracy in some 
time periods, but there are large fluctuations and the overall 
RMSE=2.31. The proposed TSEVA-based method performed 
best, with high accuracy and high stability over the entire time 
period, and RMSE=0.875. 

IV. CONCLUSION 
In this paper, a novel temporal-spatial equivalent virtual 

array technique is proposed for accurate vital sign monitoring. 
A virtual array is established, and the different frequency 
components of human thorax surface motion are equivalent to 
different incoming angles of waves incident on the virtual 
array. A coarse-to-fine estimation method is presented for 
respiration rate and heart rate monitoring. Experiments were 
carried out and the results show that the proposed technique 
can detect human vital sign signal with super-resolution and 
maintain high accuracy. 
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