
 

 
Abstract  Today, the volume of data that needs to be 

communicated between wireless agents and the cloud has 
surpassed the ability of the available systems to transfer, manage 
and process it. Yet nature has told us that such an approach is 
ineffective and consumes all the resources we try to preserve with 
complex, expensive, and often inefficient solutions. In this paper, 
we will explore nature’s design of intelligence and translate it to 
design guidelines for Intelligent Spectrum Sensors. 

Keywords electromagnetics, sensors, intelligence, hybrid 
architectures, emergent memories, heterogeneous integration. 

I. INTRODUCTION 
In the past three decades, advances in materials and 

electronic devices have extended Moore’s law, increased 
device density and memory, and reduced computation and 
power consumption. They have driven the development of 
sensors able to collect data continuously and the design of 
software that can produce synthetic data at high bit data rates 
resulting in what we call today the Challenge of Data Deluge 
[1]. Following these advances, 6G intends to support 
autonomous driving and holographic communications, among 
other applications, implying the ability of systems to collect, 
store and process raw sensory data on the Cloud in real-time 
and with energy conservation.  Contrary to these promises, 
experience with 4G and 5G technologies points in the opposite 
direction. As the number of sensors grows logarithmically, 
wireless data traffic and consumed energy are on an accelerated 
growth curve. The most significant growing component of 
electric energy consumption in the Information and 
Communication Technology (ICT) industry is communication 
to and from Data Centers. It is projected that by 2025 the 
amount of data stored will reach 187 Zettabytes (1021 Bytes), as 
shown in Figure 1 [2]. Due to the lack of information relative 
to the number and location of many worldwide Data Centers, it 
is currently difficult to estimate the electric energy required for 
data storage and the overall impact on CO2 emissions. 
However, projections based on self-reported data [3] estimate 
that, by 2030, data storage will be the fastest-growing 
component of ICT, projected to reach 10-20% of global electric 
energy usage [4].  

In parallel with the development of the personal computer 
and the growth in information processing and knowledge, our 
curiosity about the brain and its functions has led to an 
explosion in research in the past twenty years. Fundamental 
discoveries have shed light on the brain’s physiology, the 
mechanisms of information gathering, unsupervised learning, 
and decision-making in an unmatched energy-efficient way. 
These discoveries drive a stark contrast between a laptop's brute 
force and energy-hungry computing power with the processes 

of information-based awareness, decision, and action of a brain 
that is inferior in mass and volume but superior in power use. 

While there are still many unanswered questions relative to 
what drives human brain functions, including learning and 
decision-making, we have obtained a fundamental 
understanding of the human brain’s architecture [5], which can 
guide engineering design principles as we try to answer two 
critical questions; What is intelligence and what drives it? How 
is it introduced into electronics? How do we reduce our 
dependence on data storage and contain energy usage? 

In the following, we will discuss the concept of intelligence, 
the role of brain functions in intelligence, brain architecture for 

intelligence, and its fundamental learning and decision-making 
processes. Then we will extend these concepts to engineering 
design principles and practices that lead to intelligence in edge 
devices. Finally, we will provide examples of applying these 
principles to designing intelligent electromagnetic sensors for 
spectrum sensing.   

II. EDGE INTELLIGENCE 
We can argue that living species are governed by only one 

policy: survival under energy constraints. Their brain has been 
an essential body component to ensure they follow this policy 
successfully. However, survival has different implications 
depending on the size and lifetime of living organisms. A brain 
is a biological mass that requires energy to operate effectively. 
As a result, it does not exist if its added value does not 
effectively increase the probability of survival. This leads us to 
the realization that not all living species have a brain. Only 
multicellular organisms, with a size of mm or more and with a 
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Fig. 1: Volume of data created/stored and expended energy per sector 
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lifetime longer than a few days, have a brain, such as C’elegans  
[5], which does have a brain with only 302 neurons.  For these 
living organisms, where there is a need for coordination 
between cells, their brain may be responsible for a large 
percentage of their size, indicating that their presence 
substantially increases their ability for survival. 

As the size of an organism grows from C’elegans to 
Humans, the brain increases substantially in complexity and 
number of neurons (the human brain has 100 billion neurons 
between the cerebellum and the cerebral) to ensure coordination 
in function and action. Evolution through constant redesign has 
resulted in the human brain coordinating sensing, processing, 
and control executed in real-time and with the least possible 
energy. This is achieved by following policies and optimizing 
functions based on acceptable probability measures of success. 
Using policies in a brain results in a layered optimization of 
process and decision-making. In the most intelligent species, a 
slew of derivative policies leads to suboptimal solutions that are 
very effective most of the time. Depending on the hierarchy of 
a policy, the closer it is to the elemental policy of survival, the 
more challenging it becomes to alter; most derivative policies, 
however, are influenced by external conditions creating a 
continuously changing web of individual behaviors. Based on 
the above observations, we can conclude that edge intelligence 
represents the ability to collect information about the 
environment, process it as fast as possible, correlate it 
effectively, and use it to make decisions and take actions that 
increase the probability of achieving the intended outcomes, 
under severe energy constraints. 

III. ARCHITECTURE FOR EDGE INTELLIGENCE 
Edge intelligence has been spoken about more than 

demonstrated, with a recent exception in voice and text 
processing [6]. Most edge devices have already converted to 
platforms of sensors, i.e., cell phones with audio, video, camera, 
comms transceiver, and a GPS; automotive vehicles with 
everything included in the phone plus multiple radars; 
biosensors (bio-watch, bio-ring, glucose sensor) which record 

vital body signs and body chemistry and communicate the data 
directly to the cloud. While most of the collected information 
remains in storage unutilized, it is the most significant 
contributor to energy usage for storage and retrieval. In nature, 
however, not a single bit of data remains unprocessed.  

Using a distributed architecture, a nervous system senses the 
environment, communicates, computes, and actuates 
movement with speed, accuracy, sparsity, noise, and energy 
trade-offs. Bodies are richly endowed with sensors having a 
wide range of dynamic time scales, from pain sensors with a 
time scale of seconds to acoustic sensors in echolocating bats 
that can time sound pressure changes at the microsecond level 
to detect source locations and distances.  Many other sensors, 
such as olfactory sensors, vestibular accelerometers, dynamic 
vision sensors, and many pressure, temperature, and touch 
sensors, fill in a million-fold dynamic range. How does the 
brain combine and coordinate all these data streams? It does so 
with multiple layers of sensorimotor integration.   

Sensory and motor control streams are not isolated from 
each other but interact at every layer of the hierarchy. Fast, low-
resolution decisions are made at the bottom of the order (i.e., 
our eyes follow a flying bird). Each successive layer improves 
information quality from the summaries it receives about the 
state of lower controllers. The highest layers only know what 
needs to be accomplished (i.e., walking on a given trail). 
Nevertheless, brains achieve remarkably fast, accurate, and 
robust decision and control performance due to a highly 
effective layered processing, decision, and control architecture 
[5] that is designed to adhere to a few fundamental rules; 

• Process data as close to the sensor as possible 
• Send only what is essential,  
• Send information at the lowest rate possible, 
• Act when necessary. 
Inspired by successful biosystems, we suggest a layered 

approach for edge-intelligence architecture, which can 
distribute the burden of sensing and decision-making from the 
centralized cloud to the end nodes. Figure 2 provides a 

Fig. 2: Layered architecture for an intelligent sensor platform. Expected data-to-information reduction 100,000:1 
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schematic of this layered hierarchical architecture, specifically 
developed for a platform of sensors and includes three 
processing layers.  At each layer, information is combined and 
distilled to allow decisions to be shaped by the task at hand.  
Different combinations of sensory information address each 
situational context, which is controlled by top-down projections. 
Information flow toward decision and action can be rapidly and 
flexibly controlled to accomplish action goals set at the highest 
layers.  Consequently, only a subset of the sensory information 
must be transmitted to the next layer.  In addition, state-of-the-
art online sensor-action systems greatly ignore such 
possibilities in applications that store data for later (or never) 
usage. Siri or Alexa, for example, sends voice command data to 
the cloud to be processed, sometimes by deep neural networks 
(DNNs), and then sends back a voice response from the cloud 
to the car or mobile phone. This excessive data traffic to and 
back from the cloud can be avoided if the processing is done as 
close to the sensor as possible. In the proposed distributed 
architecture, there are three primary layers where significant 
data reduction is achieved. 
A.  Layer 1 - Sensory Transduction (1000:1 data reduction)  

At this level, raw data sent by each sensor are processed to 
extract information that may either lead to a reflexive action or 
be reduced to an executive summary of events sent to the next 
hierarchical level (see Figure 2). The Sensory Transduction unit 
includes analog and digital data processing circuits co-located 
with the sensor and designed to translate the raw data outputs 
into information. To address energy-efficient processing of the 
multi-modal sensor data, an algorithm-hardware co-design 
approach is employed to re-use the model across different 
modalities of data, improve working memory efficiency and 
reduce energy overheads. Most present-day sensors generate 
analog outputs, instilling the need to rethink analog hardware 
design that can embed and sustain deep neural networks (DNNs) 
at the edge. Analog computation in memory (ACiM) is an 
attractive paradigm that can accelerate local NNs. However, 
ACiM hardware suffers from a significant overhead (both in 
latency and energy) posed by Analog to Digital Converters 
(ADCs). To overcome this barrier, training the algorithm with 
hardware-in-the-loop could achieve ADC-less ACiM hardware 
accelerators for embedded algorithms. 

For analog-in-memory processing, there are two possible 
hardware-algorithm co-designed architectures. The first one 
uses a crossbar configuration of emerging memory devices that 
results in a massive reduction of computations involving 
vector-matrix multiplications (VMMs) commonly utilized in 
filtering, compression, data synchronization, and fusion signal 
processing methods. Analog crossbar arrays efficiently 
implement processing in one time-step instead of a digital 
implementation resulting in O(NlogN) time-steps or 
neuromorphic implementation O(N) where NxN is the matrix 
size in VMM. The second approach incorporates a memristive 
cellular neural network to process the analog signal pixel-
parallelly (see Figure 3). The neural network allows for orders 
of a magnitude speed advantage over digital hardware by 
performing analog in-memory computing. In the case of image 
processing, as each cell processes one pixel of the image in 
parallel with all others, the one-to-one connectivity between 
cells leads to high	throughput	and	low	latency	(<10	µs).	 

Compared with a purely CMOS implementation, a 
memristive MLP offers more than a 50% reduction in the 
transistor count, non-volatility, better power efficiency, and 
substantially faster processing than a convolutional neural 
network (CNN). A CNN’s processing speed depends on various 
factors, including kernel size and input image size. On the 
contrary, CeNN’s computation times are independent of 
network size if the image to be processed has dimensions within 
the bounds of the network [8],[9]. This data processing 
approach reduces high data rates to as low levels as possible 
while preserving the quality of information. Similar 
observations have been made using fully connected and 
recurrent neural networks embedded in crossbar configurations.  
Event sensors, whenever available, achieve part of the 1000:1 
reduction goal. For these types of sensors, we employ a class of 
bio-inspired neural networks, namely, spiking neural networks 
(SNNs), to process visual information with discrete spikes or 
events over multiple time steps.  
B. Layer 2 - Information Integration and Control (10:1 data 
reduction) 

Layer 2 consists of two components – the Information 
Integrator Unit and the Pattern Generator Unit. At the 
Information Integrator Unit, heterogeneous information from 
Layer 1 is converted to the same event-information unit (i.e., 

Fig. 3: Memristor-based crossbar configuration with an embedded MLP 
algorithm    

Fig. 4: Identification of three QAM signals using an MLP NN on a Crossbar 
Configuration. The signal has been Fourier transformed by a Memristive 
Cross-Bar before its identification, and results have been confirmed via 
YOLO. 
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spikes) and fused by aligning the individual sensor’s temporal, 
spatial, and spectral frames. For most high-data-rate sensors, 
onboard processing can achieve some data reduction and 
compression. Still, the need for co-processing all sensor data 
for multi-modality detection and estimation limits how much 
that can be achieved just at the sensor front. State-of-the-art 
techniques in synthetic data fusion incorporate the use of social 
media and rely on deep learning computing in a combination of 
CPUs, GPUs, or FPGAs. In that context, deep learning methods 
can enhance the end-to-end capability for fusing and efficiently 
processing multi-modal sensor data [12]. The Information 
Integrator Unit transports only critical information to the next 
Layer in the hierarchy. This information is defined by the 
difference between the actual maximum observed entropy 
minus what information is already known (stored) about the 
observed system. The critical information sent forward to L3 
includes information grouped in temporal and spatial frames 
determined by the integrator and stamped by its clock. 

The Pattern Generation Unit in L2 stores a set of behavioral 
patterns designed for the platform or learned and optimized 
through the platform’s operation. These patterns are replicated 
in every control center and every layer of the platform’s 
architecture. Each behavioral pattern in this unit does not store 
individual actuator commands. It only stores information about 
which sensors or mobility control centers need to be activated 
as part of this pattern.  
C. Layer-3 (L3): Decision and Evaluation (10:1 data reduction)	

This layer consists of two units, the Synthesis and Decision 
Center and the Evaluation and Error Correction Center. 
Information communicated from L2 is correlated with 
information from previously stored time frames. Emerging 
events are identified and assessed as dangers, urgent needs, or 
opportunities. Balancing risk against need and opportunity 
leads to selecting a behavioral pattern. For the design of this 
layer, an SNN-crafted normalization or input encoding 
technique decouples the learnable parameters across different 
time steps and data streams to yield low-energy and high-
performance training.  

Recent advances in AI have vastly improved the analysis of 
high-dimensional signals sensed from dynamic environments.  
This has been accomplished primarily through learning from 
examples using deep learning, a simplified model of the 
cerebral cortex, and goal searching based on reinforcement 
learning, a simplified model of the basal ganglia.  Unlike 
engineered systems, brain control is not centralized but is 
widely distributed and organized in a layered fashion. State of 
the Art (SOTA) NN algorithms use neural learning to achieve 
a level of perception that can lead to prediction and decision. 
Neural Networks that Temporally Change (NNTC) can be 
employed in the proposed Layer 3 designs. Instead of being 
parametrized by scalar weights, these networks have their 
learned weights as temporal functions. These NNTCs 
immediately search for temporal explanations leading to 
divergence in information (that is, congestion is likely on 
Friday and not likely on Sunday). They transform uncertainty 
and likelihood into temporal representations and accurate 

predictions. The evaluation part of Layer 3 controls two gates: 
One for transferring information to the cloud and the other for 
receiving information from it. Cloud information projects 
directly to Layer 3, which would take it down as necessary. In 
a real-time system where every fraction of a second may be 
significant, the Platform allows for direct projections from 
Layer 3 to 1, just as done in sensory cortices inside the brain. 

IV. CONCLUSIONS 
Designing for edge processing and intelligence faces 

expectations for real-time effective response and limitations in 
available space that lead to requirements for ultra-high-density 
hardware that operates on limited energy budgets and with high 
levels of security and reliability. Nature’s frugality in tying 
capacity to the need for survivability and continuous learning 
provides lessons we can and should utilize in designing 
intelligent edge sensory platforms. A successful approach to 
such a design requires learning from nature how to trade off 
perception with action and survivability. In this case, the goal 
is to identify mechanisms from neuroscience [5], [6] and apply 
them to design an intelligent, autonomous mobile sensor 
platform that senses, perceives, acts, adapts, and learns in real-
time and within a limited energy budget. 
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