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Abstract — In order to reduce power supply fluctuations
and to maintain a low Power Delivery Network (PDN) ratio
in high-speed Very Large Scale Integration (VLSI) systems,
decoupling capacitors are used in power delivery networks. In
order to lower the cumulative impedance of the PDN below
the target impedance, an Adaptive Granularity Learning (AGL)
and Logistic Regression (LR) based Particle Swarm Optimization
(PSO) is used for optimization of decoupling capacitors, in this
work. The proposed approach provides results very efficiently
compared to the state-of-the-art approaches. A maximum gain
of 81% in terms of CPU time is achieved compared to the
conventional PSO based approaches.

Keywords — Power Integrity, Decoupling capacitor, Adaptive
Granularity Learning Distributed Particle Swarm Optimization
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I. INTRODUCTION

Power Distribution Networks (PDNs) are responsible for
supplying clean power within the silicon area in Very Large
Scale Integration (VLSI) systems. A typical PDN consists of
several components such as Voltage Regulator Module (VRM),
power planes on board, bulk capacitors, nets in package,
decoupling capacitors, etc. Right from the VRM to the silicon,
there are several interconnects in the PDN. These interconnects
having several limitations contribute to the nonidealities in the
output response of the system. For example, due to inductance
present in the PDN and the fluctuating current demand from
the core circuitry inside silicon, voltage output of the PDN
fluctuates. This kind of noise is termed as Simultaneous
Switching Noise (SSN) and it prevents the PDN to deliver
stable voltage to the load. The challenge in designing a PDN
is to keep a stable voltage within specified voltage limits and
it can be achieved by maintaining low impedance of the PDN.

In order to maintain power integrity in the system, the
voltage ripples at the power supply of the load should be less
than a specified voltage (∆Vn). This voltage noise tolerance
limit is defined based on the given maximum transient current
requirement (Imaxt

). Therefore, the impedance of the PDN
needs to be maintained below some maximum allowable value
across the frequency range, which is defined as the target
impedance (Zt) of the system. This is given by:

Zt =
∆Vn

Imaxt

(1)

In a defined frequency range, the probability of failure of
system functionality depends on the PDN ratio at a rated

performance. The PDN ratio is defined as the ratio of the
maximum PDN impedance to the target impedance, and it
should be less than or equal to unity. In order to maintain this,
either some additional design steps or some more components
in the PDN are required. The easiest and a cost effective way
is to use additional capacitors in the PDN to lower down the
PDN impedance. These are called as decoupling capacitors
(decaps). Decaps are used on the package/board to achieve
low Zpdn, which helps in achieving PDN ratio less than unity,
indicating a low probability of PDN performance failure.

The availability of multiple ports to place decaps and
multiple capacitors to choose from, increases the possible
port-decap combinations. Since testing for each port-decap
combination can be very tedious when large number of
capacitors are available, placement of decaps intuitively is
not viable. The objective of the present work is to select set
of ports and corresponding capacitors which can be placed
efficiently, meeting the system requirement. Such large-scale
optimization problems (LSOPs) have been addressed in the
literature using computational intelligence based methods
[1], [2]. Many studies including metaheuristic optimization
and machine learning based techniques are available for
optimal selection and placement of decoupling capacitors on
corresponding ports [3], [4], [5]. In [4], ANN is used as an
approximation of the objective function and it avoids real
evaluation of objective function at all, which would increase
the dependency of the optimization method on generating
and training an efficient ANN model with very low error
with respect to the real evaluation function. In [3], [5],
[6], [7], reinforcement learning method is used, however the
computational time taken by the method is not reported.

Machine learning (ML) is an effective way that helps to
provide insights into any system with little knowledge of
its working. As evolutionary computational (EC) algorithms
process large data stored for search space, population
and problem features during the iterative process, the ML
techniques can come in handy in analyzing such data to
improve the search performance. In this work, a Logistic
Regression (LR) technique has been used for cluster control
along with Adaptive Granularity Learning Distributed PSO
(AGLDPSO), which includes locality-sensitive hashing (LSH)
based clustering analysis [8].
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II. PROBLEM STATEMENT

In this work, a practical system is considered for analysis.
The system consists of a PDN supplying power to the core
circuitry of a high-speed VLSI system. As a practice in
industry, decoupling capacitors to be placed in the PDN
are selected on the basis of their anti-resonance points and
are placed as close to the core circuitry as possible [9].
This arrangement of capacitors helps to achieve the PDN
impedance requirement eventually meeting the desired system
performance. However, when several ports are available in the
PDN for placing decaps, it becomes very challenging to select
the decaps as well as the corresponding ports to place them.
After placing the decaps, the equivalent self-impedance of the
PDN, Zeq can be computed as [10]:

Zeq = (Z−1
pdn + Z−1

decap)
−1 (2)

where Z-parameters matrix of the PDN is denoted by Zpdn.
Zpdn has the dimension of p× p× f where p and f represent
the number of ports and frequency points, respectively. Zdecap,
having same dimesion as Zpdn, is a diagonal matrix having the
self-impedance derived from the Z-parameters of the decaps.
The impedance of decaps are indexed at the port number they
are placed on as diagonal elements in Zdecap.

The aim of this optimization problem is to get the
maximum self-impedance of the PDN below the target
impedance for a given frequency range. As a result, this
is a minimization problem and the objective function is the
maximum value of the self-impedance over the frequency
range, and is given as:

Zobj = max(Zeq(i, i, f)) (3)

where f is a frequency point and i is the corresponding
port where the self-impedance of the PDN is measured. The
objective function in (3) is a function of port number and
capacitors placed on those ports.

For the case study presented in this work, impedance of the
PDN (Zpdn) has a dimension of 21 × 21 × 1391, where the
number 21 represents the number of ports and 1391 denotes
the frequency points of study. The Z-parameters are derived
from their respective S-parameters. This work has focuses on
optimization of in-package decap since all the available ports
are on the package. When no decoupling capacitor is used,
the maximum self impedance value of the PDN is 361.2mΩ
as shown in the Fig. 1.

III. OPTIMIZATION OF DECAPS

For explaining the proposed approach, a brief background
of relevant algorithms is given in this section.

A. PSO

Particle Swarm Optimization (PSO) is one of the popular
metaheuristic algorithms used for many practical applications.
This is inspired from the natural phenomenon such as
birds flocking, fish schooling, etc. Swarm is also known as
population in PSO and each sample/member of the population
is called a particle [11]. A population is randomly defined and

Fig. 1. Self-impedance of PDN (without decoupling capacitors)

subsequently updated within the search space based on the
velocity (V ) of each of the particle. The velocity of a particle
is dependent on its past performance and the performances of
the other particles. The position (X) and velocity (V ) of a
particle can be given as:

V l+1
id = ωV l

id + r1c1(X
p
id −X l

id) + r2c2(X
g
id −X l

id) (4)

X l+1
id = X l

id + V l+1
id (5)

where the current iteration value is represented by l, D
represents the number of dimensions (d = 1, 2, ..., D) in the
problem; c1 and c2 are known as acceleration coefficients,
while r1 and r2 are randomly generated numbers in the range
of (0,1). lbest is the local best position which represents the
best position of the particle so far in terms of fitness value
and is represented by Xp

id. The past position, which gives the
best fitness value (gbest) among all the particles is represented
as Xg

id and is referred as the current global best particle.
The inertia weight (ω) is relevant to balance the global and
local search abilities and it impacts the convergence of the
optimization algorithm. In PSO, ω is varied from an initial
smaller value to a greater value in the range of (0,1) during
iteration as initially updated velocity is less dependent on the
previous velocity, however, later in the process, it is logical to
vary velocity in accordance to the previous velocity.

B. Adaptive Granularity Learning Distributed Particle Swarm
Optimization (AGLDPSO) using Logistic Regression

To maintain the diversity of the population in the
evolutionary process, distributed adaptive granularity learning
is used with the particle swarm optimization method. The
population of size N is divided into sub-population of size
of M . After dividing the population into sub-populations,
the worst particle (with the worst fitness value among
the sub-population) is updated and the worst particle in a
sub-population is co-evolved using PSO as :

V k+1
id = ωkV k

id + r1c1(X
spj

id −Xk
id) + r2c2(X

g
id −Xk

id) (6)

Xk+1
id = Xk

id + V k+1
id (7)

where X
spj

id is the particle with best fitness value in a
sub-population and Xg

id is the global best particle in the whole
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population. The acceleration coefficients c1 and c2 are set to
1.5 and 0.5 respectively, to avoid premature convergence.

The clustering of the population is performed using
locality-sensitive hashing (LSH). The basic idea behind the
LSH is that two particles in the vicinity of each other have
large probability to be adjacent in the new space by mapping.
After the clustering analysis based on LSH, the granularity or
the sub-population size M is adaptively varied on the basis
of results from clustering analysis. Considering two cases of
exploration and exploitation, when more number of particles
are near to the worst particle in the population (compared to
the global best particle), it represents exploration state. On
the other hand, when more particles are near the global best
particle (compared to the worst particle in the population),
it represents exploitation state. The size M varies according
to the state in which the population is distributed (according
to the above two states). During exploration, M decreases to
result in more number of sub-population and improves the
population diversity, while during exploitation, M increases
to accelerate the convergence of the population.

To vary the sub-population size M and also since there are
two evolutionary states, a binary classifier is used. In this case,
logistic regression is used to determine dichotomous outcome
when multiple independent variables are present. The basis
of LR is the sigmoid function which outputs decision into a
probability [0,1] as:

s =
1

1 + e−z
; (8)

where linear combination of input variables is denoted by
z. LR is used to classify whether the algorithm is in the
evolutionary state of exploration or exploitation.

C. Proposed Approach

In this work, it is proposed to use AGLDPSO to solve the
classical optimization problem of decoupling capacitors. The
flow of the proposed approach used for decap selection and
placement can be well understood by Algorithm 1, where P
and C are the ports and the corresponding capacitors selected
for placement, to meet the system impedance requirement.
N and M are the population and sub-population sizes,
respectively; maxFEs is the maximum number of fitness
evaluation performed, Yp×p×f is the admittance matrix of the
PDN. The new mapping for LSH in selecting decaps and ports
were the anti-resonance points of the impedance profile of
the particles. The sub-population size M is varied according
to the result from LR. After the population is divided into
sub-population, the worst particle in each sub-population is
updated according to (6). The process is repeated till the the
global best particle (gbest) of the population yields impedance
lower than the target impedance.

IV. RESULTS

The dimension of the dataset of decaps used in this
case study is 1000×1391, where the number of decoupling
capacitors present for placement is 1000 and the number of

Algorithm 1 AGLDPSO algorithm for decap optimization.

Input: Ypdn = Yp×p×f , Zt, N, c1, c2, ω, maxFEs
Output: Zobj , C, P

1: Nd = Nd + 1;
2: Generate initial population X and velocity vector V l=0;
3: Initialize sub-population size M ;
4: FEs = 0;
5: while (Zobj > Zj) do
6: Update initial personal best population Xp

7: Check initial global best (minimum) Zobj

8: while (FEs > maxFEs) do
9: gbest particle is determined;

10: Adaptively M is varied using Logistic Regression;
11: Divide the population into N/M sub-population;
12: for each sub-population do
13: Determine the pbest in the sub-population;
14: Update the worst particle Pw;
15: FEs = FEs + 1;
16: end for
17: end while
18: end while
Output: Zobj = max(Zeq(1, 1), where (Zeq)f = (Y −1

pdn +

Y −1
decap)

−1
f , ∀ ∈ [0, fmax] , Xg = [P C]

frequency points taken into account is 1391 (between 100
Hz to 100MHz). The dimension of cumulative impedance of
the PDN matrix (Zpdn) used is 21 × 21 × 1391, where
1391 denotes the frequency points taken into account and
21 are the number of ports available. Here, self impedance
(Z11) is measured at port-1 to keep the cumulative impedance
minimum. The remaining 20 ports out of 21 ports are available
for the placement of decaps. Zt is kept at a value of 60mΩ to
meet the system requirement.

For comparison with the state-of-the-art, conventional
PSO is used along with the Matrix-based PSO [12]. To
compare the proposed method with other machine learning
based metaheuristic algorithms, a radial basis function based
surrogate assisted PSO (SuA-PSO) is also considered, which
uses neural network as a surrogate model for fitness value
evaluations [13]. The population size of 50 has been set for
PSO and MPSO, for the proposed method population size of
500 has been considered, while for SuA-PSO, the population
size is set to be 20. For the proposed approach, maximum
number of fitness evaluations were set at 10000. For PSO,
MPSO and SuA-PSO maximum number of iterations has been
set to 50. All the algorithms were executed on a system with
8 GB of RAM and Intel i5 8th Gen 2.4 GHz on MATLAB
R2019b.

For all four algorithms, 10 independent runs were
considered for performance comparison and their summary
is presented in Table-1. In Table-1, Navg and Nmin denotes
the average and minimum number of decoupling capacitors
used, respectively, for meeting system performance. Here, Z
is the impedance value of PDN corresponding to Nmin and
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T (in sec) is the average computational run time for the
algorithm to converge. Using the proposed approach, a gain
in CPU run time of 81.2% is observed compared to the PSO,
79.4% compared to the MPSO, and 52% compared to the
surrogate-assisted PSO approach is observed.

Table 1. Performance summary of algorithms

Parameter Optimization Algorithms

PSO [11] MPSO [12] SuA-PSO [13] Proposed
approach

Navg 7 6 8 6
Nmin 5 5 6 4
Z 59.3 54.2 58.2 58.3
T 731 668 286 137

Gain in
CPU Time 81.2% 79.4% 52% -

The optimum self impedance of the PDN obtained by
PSO, MPSO and the proposed AGLDPSO based approaches
using minimum number of decoupling capacitors is shown in
Fig. 2. In Fig. 2, it can be observed that in the proposed
approach, diversity of the population while optimum search
is maintained, resulting in convergence at minimum number
of decaps i.e. 4 to meet system requirement, while for PSO
and MPSO, it is 5. The average and minimum number of
decaps required to meet the target impedance for conventional
PSO are 7 and 5. For MPSO, average and minimum number
of decaps required to meet the target impedance are 6 and
5, while for SuA-PSO they are 8 and 6. However in the
proposed approach, average and minimum decaps required are
the minimum among all the other three approaches, i.e. 6 and
4, respectively. Thus, the proposed technique of AGLDPSO
has resulted in significant reduction in computational time as
summarised pictorially by Fig. 3.

Fig. 2. Optimum Impedance of the PDN

V. CONCLUSION

In this work, a fast and efficient method for decoupling
capacitor placement and selection in a PDN is discussed using
granularity learning and logistic regression. In this study, a
practical power distribution network is taken into account,
and the target impedance of the system is achieved using the

Fig. 3. Comparison of average computational time

least possible number of decoupling capacitors. The proposed
method uses adaptive sub-population sizing with the help
of logistic regression to improve computation time for large

scale optimization problem of decoupling capacitors placement
compared to the conventional PSO techniques and neural
network based surrogate assisted PSO. Proposed approach
outperforms other traditional metaheuristic algorithms in terms
of fast convergence and reduced computation time efficiency.
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