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Abstract—This paper provides a comprehensive analysis of the 

role played by the equivalent nonlinear output capacitor (����), 
seen at the transistor’s intrinsic drain, in the efficiency of 

continuous class F (CCF) power amplifiers (PAs). New design 

equations of the CCF PA are derived to incorporate the effect of 

this capacitance. It is noted that the nonlinearity of ����  can 

impose both active and passive second harmonic terminations at 

the current-source reference plane (CRP). A design methodology 

is proposed to obtain the optimum, passive, second harmonic 

terminations that maximize efficiency at the load reference plane 

(LRP). Finally, this improved design methodology is validated 

with experimental tests made on a CCF PA prototype.   

Keywords—Continuous class F, power amplifier (PA), 

nonlinear capacitor, nonlinear analysis. 

I. INTRODUCTION 

Harmonic tuning is a popular technique in power amplifier 

(PA) design to achieve high efficiency [1]. The continuous class 

F (CCF) PA was introduced to maintain the output power and 

efficiency of Class F over a continuous design space [2-3]. 

Mapping the impedances from this space to frequency enables 

the design of broadband PAs. The CCF design equations are 

defined at the current-source reference plane (CRP) [3-4]. 

However, real transistors with a nonlinear output capacitance 

(����), see their waveforms altered from the ideal ones, so that 

the actual performance of the CCF PA at the load reference 

plane (LRP) is no longer optimum. Some previous studies on 

continuous class J (CCJ) PAs have presented the impedances 

and the performance of the PA at the LRP due to the nonlinear 

����  [5-6]. Depending upon the required second harmonic 

impedance of the CCJ at the CRP, the resultant LRP impedance 

should be either active or passive. Moreover, the efficiency at 

the LRP is not constant within the design space, unlike the one 

measured at the CRP. An active CRP second harmonic load was 

also reported in CCF PAs with nonlinear ����  [4]. Although 

these studies have already presented the performance of the PA 

at the LRP, the reason behind the observed variation in the 

efficiency, and its relation to the active and passive nature of 

the CRP impedances is yet to be addressed. In fact, the design 

equations of CCF already found in the literature do not account 

for the effect of the nonlinear ����. 
To fill this gap, this paper analyzes the impact of a nonlinear 

����  in CCF PAs. The design equations of the CCF PA are 

rewritten at both the CRP and the LRP, to include the effect of 

the nonlinear ����. It follows from this new analysis that the 

second harmonic impedance needs to be considered active or 

passive at the CRP, unlike purely reactive, as predicted by the 

conventional CCF design. Consequently, a new design 

methodology to select the optimum passive impedance to place 

at the LRP for maximizing efficiency is proposed.  

II. DESIGN EQUATIONS OF CCF PA WITH NONLINEAR COUT 

A. Theory of CCF PA  

The drain-source voltage for CCF operation is [3-4],  

	
��
� = �1 − � cos 
���1 + � cos 
��1 − � sin 
� (1) 

where 
 ≡ ��� and ��  is the excitation’s angular frequency. 

Equation (1) results in the normalized (to � !� = �

) voltage 

waveform components,  
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Accordingly, the normalized (to the peak current :;<= ) 

current waveform is defined as [4], 

 
>?@�A�
BCDE = "

F + "
� cos 
 + �

,F cos 2
 − �
"HF cos 4
 + �

,HF cos 6
 (6) 

and is fixed for any set of the voltage waveform parameters �,
�, and �. These equations can be recast by making � = α/�", 
which allows quick assessment of the resistive part of the 

second harmonic impedance. For instance, in the conventional 

CCF PA the second harmonic impedance is purely reactive, 

which can be obtained by making �" = 2, or � = �/2 . 
The maximum efficiency is found by maximizing 

NOP� !"
# Q with � . For �" ≈ 2 , this can be achieved by 

maximizing the numerator, resulting in 

 � ≈ �S�/'*"
,  (7) 

The general practice to design a CCF PA is to enforce the 

voltage, and current equations defined in (1) and (6) at the CRP 

and create a design space that is then mapped to frequency by 

making use of � , i.e., varying it within T−1,1U , since this 

parameter does not affect either efficiency or output power. 

B. Theory of the CCF PA with Nonlinear Cout 

The simplified model of a transistor with a nonlinear ���� is 

shown in Fig. 1 (a). The gate is assumed to be terminated by a 

short circuit at all harmonics, therefore, ����  represents the 

combination of the drain-source capacitor, �VW, and the gate-

drain capacitor �XV, as in [5]. For a GaN HEMT, the nonlinear 

����, as a function of 	
��
�, is well approximated by  
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�YZ[T	
��
�U = �� + \]
� )1 − tanh abc+�c − 	
��
�3d4 (8) 

where ��=0.93 pF, ec= 0.74 pF, bc= -0.04 V-1, and �c=12.58 V, 

for the 10 W GaN HEMT CGH40010F, which will be used for 

the PA implementation in this paper. Although �XV varies with 

	
f = 	
� − 	f� , its dependence on the gate-source voltage 

	f� is neglected in this model as 	f� is much smaller than 	
�. 

The variation of the nonlinear ����  as a function of 	
�  is 

shown in Fig. 1(b). With a nonlinear ����, the output power and 

drain efficiency (DE) will be altered at the LRP. Beyond �YZ[, 

all elements are linear, and thus the performance at the package 

plane is similar to the one at the LRP, assuming low losses. 

The time-domain waveform of ����  can be obtained by 

using (1) in (9), leading to the ���� waveforms shown in Fig. 

2(a) along with the CRP voltage and current. The performance 

of the PA at the LRP can be calculated using the current at this 

plane, ghij. The current flowing through ���� is [7],  

 gkYZ[�
� = �YZ[T	
��
�U  l?@�A�
 A  (9) 

and ghij = −�g
� + gkYZ[�. Actually, gkYZ[  can be recast as, 

gkYZ[�
� = "
� m∑ +�YZ[o'Opo'A + �YZ[o'

∗ O*po'A3r
o's� t ×

                   "� m∑ +5v�
� !o.Opo.A − 5v�
� !o.
∗ O*po.A3r

o.s� t (10) 

in which ����,v  are the Fourier components of �YZ[T	
��
�U. 

� !,o  are the Fourier components of 	
��
� given in (2)-(5). 

The fundamental and second harmonic components of the 

current gkYZ[  can be obtained from (10) as follows: 

 :kYZ[" = 5���YZ[�� !" − pw(kxyz.$%&'
∗

� + p�w(kxyz'∗ $%&.
� … (11) 

 :kYZ[� = pw(kxyz'$%&'
� + 52���YZ[�� !� − pw(kxyz7$%&'

∗

� … (12) 

The admittance seen at the LRP can now be obtained as 

 |hijo = "
}~���

= B~���
$%&�

= − B%&�1B�xyz�
$%&�

= |kijo − |kxyzo (13) 

Now |hijo and |kijo, for the CCF PA,  at the fundamental and 

second harmonic, can be obtained by making �"=2 and -1≤�≤1 

in (1)-(13), the result is shown in Fig. 2(b). When �"=2 and �=0, 

� !�=0, i.e., the CRP is a short circuit at the second harmonic, 

which enforces a short circuit on ���� and therefore, at the LRP. 

However, |hij� is active for -1≤�<0 and passive for 0<�≤1, as 

shown in Fig. 2(b), this is analysed further in the next section.  

III. IMPACT OF THE NONLINEAR COUT ON THE CCF PA 

A. Understanding the Nature of the LRP Admittances  

The required |hij� to enforce a purely susceptive |kij�, is 

dependent on |kYZ[� = B�xyz.
$%&.

, as per (13). The second harmonic 

current :kYZ[�  through ����  can be approximated by the first 

two terms of (12), thus: 

 |kYZ[� ≈ pw(kxyz'
������

�'

. $%&'
$%&.�
�.

+ 52���YZ[� (14) 

The nature of |hij� , i.e., whether active or passive, is 

determined by the real part of |kYZ[� . Since ����0 is real, the 

second term of (14) is imaginary, therefore, NOP|kYZ[�Q only 

depends on the first term in (14), in particular in the products 

NOP�"Q ⋅ NOP��Q  and −:�P�"Q ⋅ :�P��Q . The variation of �" 

and ��  with � is shown in Fig. 3. The variation of �"  with � 

depends on ����1, to obtain the dependence of ����1 on �, (8) is 

first approximated by a 3rd order polynomial  of 	
�, (15). This 

approximation of  ����T	��U is shown in Fig. 1(b) (black dots). 

 �YZ[T	
��
�U ≈ �� + �"	
� + ��	
�
� + �,	
�

,    (15) 
where ��=1.48 pF, �"= -1.79×10-2 pFV-1, ��=1.86×10-4 pFV-2 

and �,= -6.13×10-7 pFV-3, for this case. 

Now, by substituting the Fourier coefficients of  	
� in (15), 

����1 can be approximated by: 

 �YZ[" ≈ T�"� !" + 2��� !�� !" + 3�,� !�
� � !"U (16) 

In (16), �", ��, and �,  are constants, and � !� = �

, is also 

a constant. However, :�P� !"Q varies its sign with � as per (2). 

Therefore, a similar change in sign can also be seen in NOP�"Q, 

 
(a)                                          (b) 

Fig. 1.  (a) Simplified model of a transistor with nonlinear ���� , and                   

(b) Nonlinear ���� as a function of 	
��
� of CCF PA. 

 
   

(a)                                                        (b) 

Fig. 2. (a) Normalized CRP voltage and current, and nonlinear �YZ[
waveforms, and (b) Impedances of CCF PA at CRP and LRP planes. 
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(a)                                                  (b) 

Fig. 3.  Variation of the (a) real and (b) imaginary of �1  and �2  with �. 

 
(a)                                              (b) 

Fig. 4.  Variation of (a) Real, and (b) Imaginary terms of |kYZ[� with �. 
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as shown in Fig. 3(a). Similarly, as :�P� !"Q  and :�P� !�Q 

vary their sign with � as per (2)-(3), a similar change in sign 

can also be seen in :�P��Q, as shown in Fig. 3(b). Therefore, 

based on the different terms of �"  and �� , NOP|kYZ[�Q  is 

positive (passive) for -1≤�<0 and negative (active) for 0<�≤1, 

as shown in Fig. 4(a). For all cases, :�P|kYZ[�Q  remains 

positive, as shown in Fig. 4(b). To enforce a purely susceptive 

second harmonic admittance |kij�  at the CRP, |hij�  should 

compensate for the effects of |kYZ[�. Therefore, |hij�  needs to 

be active for -1≤�<0 and passive for 0<�≤1, as shown in Fig. 

2(b), to present the desired CCF terminations at the CRP.  

B. Performance Analysis at the LRP 

Even if the CCF terminations are ensured at the CRP, the 

CCF DE of 90.7% is altered at the LRP due to ���� . The 

fundamental current flowing through ����, :kYZ[" , affects the 

output power (�YZ[) and DE at the LRP, as follows: 

 ��hij = jxyz,~��
j?�

= �.H��P$%&'×*�B%&'1B�xyz'�∗Q
$??B%&(

 (17) 

The real part of the fundamental admittance |kYZ["  seen 

through the nonlinear ���� is shown in Fig. 5(a). NOP|kYZ["Q is 

negative (active) for -1≤�<0, and an active fundamental power 

will be injected by the nonlinear ����. Therefore, �YZ[  and DE 

at the LRP are higher than those of the CRP for -1≤�<0, as 

shown in Fig. 5(b), i.e., power is converted from second 

harmonic to fundamental. When 0<�≤1, NOP|kYZ["Q is positive 

(passive); as a result, the fundamental power will be converted 

in the nonlinear ����, mainly to the second harmonic. Therefore, 

�YZ[  and DE are decreased at the LRP as compared to the CRP 

for 0<�≤1, as shown in Fig. 5(b).  

C. Design Methodology  

Although higher ��hij  can be achieved for -1≤�<0, the 

required second harmonic termination |hij�  is active, as shown 

in Fig. 2(b), which cannot be implemented with a passive 

matching network. On the other hand, |hij� for 0<�≤1 is inside 

the Smith chart, and can be further pushed to the edge of the 

Smith chart to improve ��hij . In order to achieve optimum 

|hij� , corresponding to the best ��hij  using a passive 

matching network, � and �" of (1) are simultaneously varied. 

�"<2 corresponds to passive |hij�, and reduces the DE at the 

CRP from the CCF value of 90.7% [3]. When �">2, |hij� is 

active, and, therefore, DE increases at the CRP.  

However, the nature of these terminations and DE gets 

altered with � and �" at the LRP due to the nonlinear ����. The 

contours of |Γhij�|  and ��hij  with different �  and �"  are 

shown in Fig. 6. It can be seen in Fig. 6 (b) that an increase in 

�" , increases ��hij . The best ��hij  with passive matching 

network can be obtained when |hij� is at the edge of the Smith 

chart, i.e.,  |Γhij�|=1. For -1≤�<0, |Γhij�|=1 corresponds to 

�"<2, as shown in Fig. 6 (a), whereas for 0<�≤1, it is a �">2 

that leads to a |Γhij�|=1.  

The mapping between � and �" is crucial to achieve the best 

��hij with a passive matching network. Based on the contours 

shown in Fig. 6, � should be mapped to �", which corresponds 

to |Γhij�|=1. The mapping between � and �", and the resultant 

DE at the CRP and LRP are shown in Fig. 7 (a). The resulting 

impedances at CRP and LRP are shown in Fig. 7(b). Since           

-1≤�<0 is mapped to �"<2, DE at the CRP has reduced from 

the CCF value of 90.7%. However, due to the nonlinear ����, 
the ��hij  is higher than 90.7%. It can also be seen that Γhij� is 

now moved from outside (Fig. 2 (b)) to the edge of the Smith 

chart and, therefore, can be achieved using a passive matching 

network. For 0<�≤1, �">2 is selected, which has moved Γhij� 

from inside (Fig. 2 (b)) to the edge of the Smith chart. This has 

improved the ��hij  from that of the conventional CCF values 

shown in Fig. 5 (b). Note that the efficiency is above the CCF 

case at the LRP when it is below at the CRP, and vice-versa. 

 It can be seen from Fig. 7 (a) that the DE performance is 

not the same for different �, and also that �"=2, as proposed in 

the conventional CCF, is not optimal in real transistors with 

nonlinear ����. This methodology finds the optimum, passive, 

fundamental and second harmonic terminations, for ��hij . 

The third harmonic termination is also relevant for the 

design of the CCF PA. Here, it is considered as an open circuit, 

and its analysis was neglected. However, a similar analysis can 

be performed to obtain the optimum third harmonic termination, 

which is also impacted by the nonlinear ����. 

IV. EXPERIMENTAL VALIDATION 

To illustrate the proposed methodology, a CCF PA is 

designed using the 10 W GaN HEMT CGH40010F. A 

 
(a)                                              (b) 

Fig. 5.  Variation of (a) real of |kYZ[", and (b) drain efficiency and normalized 

output power (�YZ[) at CRP and LRP with �. 
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Fig. 7.  (a) Mapping between � and �", with corresponding DE, and (b) the CRP 
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nonlinear embedding model is used to project the impedances 

from the CRP to the package reference plane (PRP). Based on 

the methodology presented in Section III-C,  �">2 is selected 

for 0<�≤1 to illustrate that the active CRP impedance can be 

achieved with a passive matching network. The fundamental 

and second harmonic impedances corresponding to �">2 and 

0.5≤�≤1 are mapped to frequencies from 1.6 to 2.3 GHz to 

design a broadband CCF PA. The third harmonic impedance is 

carefully placed to avoid a sudden drop in efficiency due to 

resonance, as in [4]. The second harmonic impedance at the 

gate terminal is placed near a short circuit, to also avoid 

resonance. The fundamental and second harmonic CRP and 

PRP impedances of the designed CCF PA are shown in Fig. 8 

(a). It can be seen that the passive second harmonic impedance 

at the PRP is able to present an active impedance at the CRP. 

Unlike the conventional CCF, using �">2 in theory facilitated 

the appropriate choice of fundamental and active second 

harmonic impedance pair at the CRP.  

The designed CCF PA was implemented on RO4350B 

substrate with a dielectric constant of 3.66 and thickness of 20 

mil. The fabricated PA is shown in Fig. 9. The simulated and 

measured �YZ[ , DE, and gain at 3 dB compression are shown in 

Fig. 8 (b). There is a good agreement between simulated and 

measured results in �YZ[ , DE and gain, except for some 

deviation in the gain profile at the band edges. The final PA 

achieved a �YZ[  of 41.6 to 42.7 dBm with DE of 72 to 78 %, 

with 8.6 to 11.1 dB gain at 3 dB compression for 1.6-2.3 GHz. 

The performance of the implemented PA is comparable to state-

of-art continuous class PAs as shown in Table 1.    

V. CONCLUSION 

The impact of the nonlinear �YZ[  on the performance of 

CCF PAs was analyzed by deriving the components of the CCF 

voltage that contribute to the power conversion from 

fundamental and second harmonic. By incorporating the 

nonlinear �YZ[ in the design equations of CCF, the performance 

and impedance profile at the LRP could be predicted. The 

proposed methodology facilitated the design of a CCF PA with 

active CRP impedances using a passive matching network.  
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(a)                                      (b) 

Fig. 8. (a) CRP and PRP impedances of the designed CCF PA, and                      

(b) Simulated and measured output power, DE, and gain at 3 dB compression. 

 
Fig. 9. Fabricated broadband CCF PA. 
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Ref. Freq. (GHz) Efficiency (%) Power (dBm) 

[4] 1.45-2.45 70-81 40.4-42.2 

[8] 0.55-0.92 70-80 39.3-41.1 

[9] 1.5-2.9 60-76.5 39.4-41.9 

[10] 1.5-2.5 60-70 39.5-40.5 

[11] 1.3-3.3 60-83 40-40.4 

This Work 1.6-2.3 72-78 41.6-42.7 

 

Table 1. Comparison with state-of-the-art continuous class PAs 
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