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Abstract — This paper proposes sample combining as a
low-complex and effective feedback data compression technique
that allows to significantly reduce the computational effort and
buffering needs for parameter adaptation in a closed-loop digital
predistortion (DPD) system. Compression is achieved by applying
an integrate & dump operation to an undersampled feedback
signal. The proposed method is experimentally validated for RF
measurement based behavioral modeling as well as closed-loop
DPD of a 3.5 GHz GaN Doherty PA, taking also quantization
effects of the feedback path into account. Our results demonstrate
that the proposed technique is as capable as state-of-the-art
histogram-based sample selection, however, at a much lower
complexity.

Keywords — Behavioral modeling, closed-loop adaptation,
digital predistortion (DPD), low-complexity, power amplifier (PA).

I. INTRODUCTION

Power-efficient transmission (TX) is of key importance

to any modern wireless communication system. Therein,

the power amplifier (PA) is the main contributor to TX

power consumption as it suffers from a well-known trade-off

between amplification linearity and power efficiency. Digital

predistortion (DPD), amongst other techniques, is commonly

applied to mitigate nonlinear as well as dynamic distortion

due to the amplification, enabling linear transmission at higher

power and thus greater efficiency [1]. As part of a DPD system

as shown in Fig. 1, the PA output is observed using a dedicated

feedback receiver in order to track changes in the PA behavior.

The feedback is then used in conjunction with the intended TX

to update a DPD model suitable to linearize the PA.

Two obstacles are inherent to the feedback based model

estimation. Firstly, in-order to fully capture the distortion effect

on wideband TX signals, high oversampling ratios are needed,

e.g. 5× of the signal’s effective linear bandwidth. Furthermore,

due to the large peak to average power ratio (PAPR) of

spectrally efficient waveforms, a high bit-resolution is required

to represent the feedback with a sufficiently low quantization

noise floor, resulting in high analog-to-digital conversion

(ADC) energy consumption as well as high data-rates for

the signal processing. To alleviate the sampling-rate problem,

an undersampled feedback signal can be acquired instead,

which is sufficient to extract the DPD model coefficients

[2]. Elimination of the linear signal component for data

reduction has been discussed as a way to reduce the required

bit-resolution [3]. A second issue arises with increasing model

size, where the coefficient estimation becomes computationally

complex and poses a substantial contribution towards the

        feedback  receiver 

coefficient training 

coeff. estimate

regressor matrix

integrate &
dump 

coefficient
update 

BB to RF 
 

ADC 
 

RF to BB 
 

DAC 

cancellation 

Fig. 1. Illustration of the adaptive DPD system with sample combining
realized as an integrate & dump filter in the feedback path.

overall DPD system’s complexity and power consumption.

Histogram-based sample selection methods have been studied

to address the computational cost of the estimation, which rely

on selecting a representative subset of feedback samples [4],

[5], [6]. While these approaches allow model identification

using significantly less samples, the presented methods

require to first analyze a large TX sequence or capture

a longer feedback sequence in order to extract statistical

properties of the signals before a condensed sample set is

derived. Alternatively, the statistics can be precomputed, which

however renders the proposed methods incompatible with

variation of the PA behavior over time and in particular with

changes in the transmit signals.

In this article, we propose a very lightweight, yet effective,

compression technique that builds upon the undersampling

approach and adds sample combining, as to further condense

the sample set and make identification more robust. We show

that in the presence of quantization noise, sample combining

is as effective as state-of-the-art sample selection methods,

but with lower, almost negligible, complexity. Our method

lends itself to real-time, throughput-oriented implementation,

obviating the necessity to first extract statistics from a large

set of samples. Thus, in addition to reducing model estimation

complexity, sample buffering needs and chip data-rates are

reduced. To assess the feedback reduction trade-offs and

implications on the modeling performance, we provide results

based on RF measurements for both direct PA modeling and

linearization, considering a closed-loop adaptive DPD on a

2-stage Doherty GaN PA running a 100 MHz waveform at

3.5 GHz. The joint impact of feedback quantization and sample

count on PA modeling accuracy and DPD performance is

reviewed, seeking to minimize the overall data volume required
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to identify model parameters and perform DPD adaptation.

The paper is organized as follows. Sec. II details the

proposed sample combining method for PA modeling as well

as the corresponding closed-loop DPD system. In Sec. III, PA

modeling results are shown with respect to quantization and

parameter count. In Sec. IV, closed-loop DPD measurement

results are presented and compared with a reference sample

selection method. Sec. V provides concluding remarks.

II. PROPOSED METHODS

The assumed DPD system with feedback path is depicted

in Fig. 1. Therein, x(k) are the complex-valued baseband

samples of the desired TX signal, sampled at a frequency fs,
and y(k) are complex-valued samples of PA feedback, with k
denoting the respective sample index.

A. General PA Modeling

Disregarding the predistorter at first, the nonlinear PA input

to output behavior can be described on a per-sample basis by

means of e.g. linear-in-parameter models with

ŷ(k) = gT φ(x(k), x(k − 1), ..., x(k −M)), (1)

where ŷ is the model output, g ∈ C
J×1 are complex-valued

coefficients, and φ(k) ∈ C
J×1 is a vector containing

J nonlinear regressors which are dependent on the input

samples up to a maximum history M . In this paper,

we employ the well-known generalised memory polynomial

(GMP) as a regression basis [7]. It is noted that any

other linear-in-parameter model could be chosen instead. The

coefficients g can be identified by seeking the least-squares

solution of an over-determined system given a sequence y =
[y(1), y(2), ..., y(L)]T and respective input regressors Φ =
[φ(1), φ(2), ..., φ(L)]T, e.g. by applying the Moore-Penrose

inverse as

g = (ΦHΦ)−1ΦH y, (2)

where (·)H denotes the Hermitian transpose. The length L of

the identification sequence is of high importance as a large L
will dominate the complexity of computing (2). However, a

too short sequence may not be statistically representative e.g.

due to correlation amongst samples or quantization noise, and

the system may end up under-determined. This relationship is

revisited in the experiments in Sec. III.

B. Undersampling and Sample Selection

From (2), it becomes apparent that for determining the

coefficients, the temporal relationship of samples in y is of

no further relevance. This is exploited when undersampling

the feedback, where only every δ-th sample in y is used.

The sampling rate at the feedback ADC is consequently

reduced to fus = fs/δ. It however remains a requirement

that the acquired samples support the bandwidth of the

input signal, i.e. the sample and hold times of the ADC

must support full sampling rate fs. Equation (2) can then

be used with yus = [y(δ), y(2δ), ..., y(Lδ)]T, and matching

Φus = [φ(δ), φ(2δ), ..., φ(Lδ)]T. Further, undersampling

improves the parameter identification. Since consecutive
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z }| {integrate & dump interval of length I

k
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Fig. 2. Illustration of the proposed sample combining scheme. Under-sampled
samples within a integration interval are combined through accumulation.

samples typically exhibit strong correlation, selecting only

distant samples yields a statistically richer sample set.

Consequently, a shorter length L can be chosen, which reduces

the complexity of (2). Sample selection, or Mesh selection

(MeS) techniques in [4], [5], [6] build upon the same principle,

aiming to reduce L by selecting the samples in y such that

statistics of the signals, the model excitation, or the AM-AM

characteristic are properly represented in the reduced set.

C. Proposed Sample Combining

Extending the undersampling idea, any linear operation

on the feedback data is permitted, given that it does not

systematically suppress relevant information (e.g. a low-pass),

and it can be applied similarly to the respective entries in Φ. To

further improve the representativeness of y, we thus propose

to combine several undersampled consecutive samples by

means of an integrate & dump operation. Thus, undersampled

feedback samples and their respective regression entries in Φ
are accumulated within a given integration period of length I ,

as illustrated in Fig. 2. The resulting sample vector ysc and

regression matrix Φsc are then given as

ysc =
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, (3)

with l, δ ∈ N. The accumulation yields a condensed signal with

more diverse excitation being incorporated per sample. A loss

of information is largely avoided due to a high correlation

of the original samples. Instead, the information needed for

identification is encoded in a different form, allowing more

reliable estimation of model parameters with a reduced set

size L. As shown in Fig. 1, the proposed compression can

be efficiently implemented by an integrate & dump filter

that converts the undersampled signal from the ADC to the

compressed signal ysc at a downsampled rate fsc = fs/I .

The complexity of this operation is almost negligible as at

most ⌈I/δ⌉ additions are required for compressing y into

ysc. For the coefficient estimation, the same amount of ⌈I/δ⌉
regression vectors φ(k) need to be summed.

D. Closed-loop DPD and Feedback Compression

Similar to the behavioral model in (1), the predistorter fdpd
of Fig. 1 may be expressed with

xdpd(k) = aT φ(x(k), x(k − 1), ..., x(k −M)), (4)

796



 

10
2

10
3

10
4

2

4

6

8

10

 N
 b

it
s
 p

e
r 

s
a

m
p

le
(a) normal feedback

10
2

10
3

10
4

2

4

6

8

10

(b) feedback cancellation

10
2

10
3

10
4

length L of identificaton sequence y

2

4

6

8

10

(c) undersampling

10
2

10
3

10
4

2

4

6

8

10

(d) sample combining

10
2

10
3

10
4

2

4

6

8

10

(e) mesh selection

-40

-30

-20

-10

a
v
e

ra
g

e
 N

M
S

E
 (

d
B

)

Fig. 3. PA behavioral modeling results at 3.5 GHz with respect to the feedback sequence length L and the bit-resolution N with different methods applied.

with model coefficients a ∈ C
J×1 and xdpd(k) ∈ C as

predistorted input to the PA. Different than in direct modeling,

the model coefficients are derived by iterative adaptation, for

which we utilize the damped Gauss-Newton learning rule

a(i+1) = a(i) − µi(Φ
H
i Φi)

−1ΦH
i ei. (5)

Above, µi is the learning rate parameter and ei = (yi −Gxi)
is the difference between the intended TX and measured

PA output samples in the current iteration i. G denotes the

desired real-valued gain of the PA, DPD and feedback channel.

Φi contains the respective regressors. The discussed sample

reduction methods can be directly applied to the provided

learning rule, modifying ei (instead of yi), and Φi.

To assess the feedback data volumes, we also consider

uniform quantization on the feedback signal with N bits to

mimic the impact of a low-resolution ADC. The quantization

is applied as mid-thread, covering the full dynamic range of

the signal. A way to reduce this dynamic range is by cancelling

the known linear part of the feedback and only quantize the

remaining error signal, as depicted in Fig. 1. We assume that

for cancellation the feedback and forward signal are perfectly

matched in time and amplitude. It is noted that in a real

setup, the delay and power mismatch between xdpd(k) and

the feedback y(k) needs to be compensated.

III. PA DIRECT MODELING RESULTS

We apply the described feedback reduction techniques in

the context of behavioral modeling of a gallium-nitride (GaN)

2-stage Doherty PA (QPA3503), operating at 3.5 GHz center

frequency with +36.5 dBm output power. A 100 MHz-wide

256 QAM modulated OFDM waveform is applied, with a

reduced peak-to-average power ratio (PAPR) of 7.5 dB. The NI

PXIe-5840 vector signal transceiver (VST) is used for analog

signal generation and RF up-conversion, and as receiver for

the amplified signal. A GMP with total of J = 90 coefficients

is used. Fig. 3 depicts the modeling accuracy in terms of

normalized mean square error (NMSE) with respect to a swept

identification sequence length L, and a varied number of bits

N per sample. Each point in the graphs is an average of 20

trials, each with different TX sequences, with the same data

presented to each method.

We compare five cases. In the depicted case in Fig. 3(a),

coefficient estimation is based on L consecutive, quantized

samples y. A lower bound for L as well as for N can be

observed, with a transition zone where more samples allow
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Fig. 4. Modeling accuracies with respect to identification data volume. The
sample count L is altered while the bit-resolution N is fixed for each method.

to compensate for the effect of stronger quantization. In

(b), as well as in the following cases, feedback cancellation

is additionally employed and thus the lower bound for

N is shifted towards a lower N . In (c), cancellation is

combined with undersampling with δ = 15 which gives slight

improvement regarding the required number of samples, but

significantly relaxes ADC sampling requirements. In (d), the

proposed sample combining method is added which gives

a major contribution towards a reduced number of samples.

Sample combining is applied with an integration window of

I = 40 samples and δ = 15 thus accumulating 2-3 samples

per iteration. In (e), the performance of the MeS method as

described in [4] is shown for reference, providing a similar

performance as the proposed sample combining method.

For each of the methods we identified a minimum

bit-resolution to minimize the feedback data, indicated by

the red dashed lines in Fig. 3. These settings are 8 bits for

the case without cancellation, and 5 bits for the cases where

cancellation is applied. The resulting modeling NMSE values

over the identification data size L×N are shown in Fig. 4.

IV. CLOSED-LOOP DPD MEASUREMENT RESULTS

The same PA (QPA3503) and equipment are next used for

the closed-loop DPD experiments, with the same TX signal

specifications (100 MHz bandwidth, 7.5 dB PAPR). For each

closed-loop iteration, a different TX sequence was generated.

The DPD experiments are repeated for five trials, using new

data in each trial. Again, each evaluated method was presented

the same TX data to ensure fair comparison. For DPD, a GMP

with J = 90 basis functions is employed.
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Fig. 6. Spectra after 20 closed-loop iterations with L=300 samples each.

Proper choice of the learning rate µ is crucial for successful

closed-loop DPD. A too low µ value will unnecessarily rein

the convergence whereas a too high µ may cause instability.

Furthermore, the optimal choice for µ has to be made with

respect to the statistical relevance of the training sequence, i.e.

a larger training sequence allows choosing larger µ. However,

stable convergence can also be ensured with very short training

batches, given a small µ and many iterations. To select a

suitable µ, we identified for each method and setting L the

maximum steady-state µss which retains the performance on a

preset DPD. Based on this study the relationship of the form

logµss = α logL+ β (6)

was derived, with β specific to each reduction method, whereas

α is identical. The closed-loop DPD experiments are then

parameterized by choosing µ1 = 2µss in the first iteration and

decay afterwards towards µss, to speed-up the convergence.

The learning rate is further limited to maximum one.

With these settings, the results in Figs. 5 and 6 are achieved

after 20 closed-loop iterations. Solid DPD performances are

reached for all methods at a large feedback data volume,

whereas the proposed sample combining, and MeS allow

achieving a high degree of linearity also with significantly

less feedback data. We find that the feedback data volume

required to meet the 5G NR maximum adjacent channel

power (ACP) specifications for medium range base-stations

or comply with the minimum specified symbol error vector

magnitude (EVM) for 256 QAM can be reduced by a factor of

5×, when compared to the baseline case, where the feedback is

normally sampled. The experiments furthermore demonstrate

that the proposed sample combining technique is as capable

as the histogram-based sample selection, however, without

need to extract signal statistics of the excitation or feedback

signal as to select specific samples in the transmit signals and

feedback.

V. CONCLUSION

Sample combining for low-complexity feedback signal

compression for DPD model adaptation was proposed in this

paper. Despite the simplicity of the method, the presented

experiments show that solid performances for PA behavioral

modeling or closed-loop DPD can be reached with a

significantly reduced data volume with the proposed method,

while taking also a low-resolution quantization into account.

The method was demonstrated to achieve similar performances

as histogram-based sample selection, however with negligible

added complexity. It is thus well suited for implementation.

At the same time, the ADC rate and bit-width can be reduced,

reducing the overall data load of the DPD system.
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