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Abstract — We demonstrate a new approach to building
multiphysics solvers, employing physics-informed neural
networks (PINNs), through the example of coupled
electromagnetic-thermal simulations. In this example, the
well-known Finite-Difference Time-Domain (FDTD) method
for electromagnetic field simulation is combined with a PINN,
designed to replace a thermal solver. The PINN is trained in
an unsupervised manner by implementing the heat equation
and boundary conditions into the network. As a result, the cost
of generating "ground truth" data is eliminated. Our work
enables standalone electromagnetic simulators, like FDTD, to
solve multiphysics problems accurately and efficiently.

Keywords — Multiphysics simulation, FDTD, neural networks,
unsupervised learning.

I. INTRODUCTION

Multiphysics interactions of electromagnetic fields have

been at the forefront of research in the microwave community

[1], [2], [3] and beyond [4]. The numerical study of

these interactions is based on coupling electromagnetic field

simulators with independently developed solvers of associated

thermal, mechanical, quantum and chemical phenomena.

Fundamental questions of numerical accuracy, stability

and efficiency, thoroughly yet separately addressed over

the years for computational methods in electromagnetics,

acoustics, thermodynamics, mechanics, quantum mechanics

and chemistry, have received little attention in the process

of integrating them into multiphysics packages. However,

there are multiple mechanisms for error propagation between

coupled multiphysics numerical techniques [5] and challenges

with respect to producing optimal meshes for coupled discrete

methods [6].

This paper proposes an alternative route to formulating

multiphysics solvers, inspired by recent advances in scientific

machine learning and the emergence of physics-informed

neural networks (PINNs) [7]. PINNs are neural network

architectures aimed at solving partial differential equations

and inverse problems, with a wide range of successful

applications. We employ PINNs to solve the heat equation

based on initial conditions generated by the Finite-Difference

Time-Domain (FDTD) method for Maxwell’s equations,

for coupled electromagnetic-thermal problems. Our approach

combines a robust, error-controlled numerical technique, such

as FDTD, with a PINN as a heat equation solver. Thus, we

bypass the need to use, configure and generate a new mesh for

a thermal solver, or to re-use the FDTD mesh for the solution

of the heat equation (a sub-optimal approach that is commonly

used in the literature [8]).

The rest of the paper explains how to use this approach

to extract the steady-state temperature distribution in lossy,

inhomogeneous media, excited by microwave fields (Fig. 1).

We train a physics-informed U-Net (PIUN) in an unsupervised

manner, i.e. with no need for "ground truth" data generation.

Numerical results demonstrate the accuracy and efficiency

of this combination that effectively turns FDTD into a

multiphysics simulator. Similar steps can be used to couple

any electromagnetic simulator to governing equations for other

types of multiphysics interactions of electromagnetic fields.
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Fig. 1. The flowchart of the proposed method.

II. PROBLEM STATEMENT

Fig. 2 shows the general class of two-dimensional

problems we consider, where a lossy, arbitrarily shaped region

is embedded in a host dielectric medium. We consider the case

of transverse magnetic polarized fields, with (Hx, Hy, Ez)
field components, determined by an FDTD simulation,

applying standard finite-difference update equations such as:
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where (i, j) are Yee cell indices, n is the time step index, εi,j
and σi,j are the permittivity and conductivity of the (i, j) cell

of dimensions ∆x × ∆y, respectively, and µ is the uniform

magnetic permeability throughout the domain of Fig. 2. The

presence of an electromagnetic field in the conducting medium

results in dissipated (ohmic) volume power density Q, which

can be determined from FDTD at each (i, j) Yee cell as:

Qi,j = σi,j⟨|Ei,j |
2⟩ (4)

where ⟨·⟩ denotes time average. In turn, Q is a heat source

whose effect on the temperature within the medium can be

found by solving the heat equation, which is written, in the

presence of a cooling fluid circulating inside the medium, as

follows:

ρCp

∂T

∂t
= Q+∇ · (k∇T ) + Vs(Tb − T ) (5)

where ρ is the material density, Cp is the heat capacity, T
is the temperature, Q is the power density of the heat source

and k is the heat conductivity. Moreover, Vs is the product

of flow and heat capacity of the cooling fluid and Tb is the

temperature of the cooling fluid. These parameters are assumed

to be time-independent in this paper, although our work can be

readily extended to the time-dependent case. Instead of setting

up a finite-difference solver for (5), we extract the solution

through a physics-informed U-Net, as shown next.
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Fig. 2. Computational domain for the geometries considered in this paper.

III. A PIUN FOR THE HEAT EQUATION

A U-Net is an encoder-decoder structure that is efficient

in solving image-to-image problems [9]. It consists of a

down-sampling route and an up-sampling route, with several

convolutional blocks in each route. The detailed U-Net

structure can be found in [10]. In this work, the down-sampling

route extracts the object geometries and domain properties

from the input data and transforms them into a higher

dimensional representation through the convolutional blocks.

The up-sampling route reconstructs these extracted features

and exports the steady-state temperature distribution based on

the embedded heat equation and the boundary conditions. We

implement the steady-state version of (5):

Q+ k∇2T + Vs(Tb − T ) = 0, (6)

along with its associated boundary conditions into the PIUN.

In particular, we use (6) to formulate a loss function for the

PIUN:

LPIUN =
∣

∣Q+ k∇2T + Vs(Tb − T )
∣

∣

2
. (7)

Then, the PIUN optimizes its parameters through

backpropagation to minimize (7) for a given dissipated power

density (Q) and heat conductivity (k), in an unsupervised

manner, as shown in Fig. 3.
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Fig. 3. Implementation of the heat equation as loss function.

We can also readily implement boundary conditions

into the PIUN. For example, consider the Robin boundary

condition:

−k

(

∂T

∂n

)

w

= h (Tw − Tf ) (8)

where ∂T/∂n is the partial derivative of T in the normal

direction defined by n, w represents the position of the

boundary, h is the convective heat transfer coefficient, Tw is

the boundary temperature and Tf is the external temperature.

In the x-direction, (8) can be discretized as:
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)
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2
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)

, (9)

where Ti,j represents the temperature at the boundary and

Ti−1,j is the temperature on the left of Ti,j . Then, the

temperature at an (i, j) node is

Ti,j =
(2k − h∆x)Ti−1,j + 2h∆xTf

2k + h∆x
. (10)

The boundary temperature (10) can be directly embedded into

the neural network architecture along with the U-Net. Then,

we can compute the temperature of the entire computational

domain by combining the output from the U-Net with the

boundary temperature from (10).

The proposed PIUN can be trained in an unsupervised

way based on the heat equation and boundary conditions.

Except for the higher efficiency compared to the supervised

training, the proposed unsupervised approach has improved

generalizability, since the PIUN learns from the embedded

heat equation, instead of the training data. Then, any problem

based on (6) can be solved by the PIUN. Note that the

electromagnetic source amplitude and material properties only

affect the dissipated power density (Q) in this problem.

Hence, the proposed approach is generalizable with respect

to geometry, source excitation and material properties.
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IV. NUMERICAL RESULTS

In this section, the proposed PIUN is verified through

two-dimensional simulations for the steady-state temperature

distribution in a lossy object within a host medium excited by

an electromagnetic wave (Fig. 2). In the training cases of the

PIUN, the lossy objects are circullar, elliptical or consisting of

overlapping circles and ellipses. We introduce multiple objects

in the computational domain for testing purposes. When

generating the objects, the radius of circles, the major/minor

axes of ellipses, and the center of each object are all variables

used to diversify the geometry training set of the PIUN.

In Fig. 2, the FDTD computational domain is a square

with a side length 138.66 mm, partitioned into 148×148 Yee

cells. The surrounding 10 cells belong to a perfectly matched

layer (PML) [11]. An array of point sources is used as a source

excitation. The region of the thermal simulation is the same as

the FDTD computational domain, excluding the PML. Instead,

the Robin boundary condition (10) is applied to the output

temperature from the PIUN, with a heat transfer coefficient

h = 5W/m2/K [12].

In our experiments, the operation frequency is 2 GHz.

At this frequency, the relative permittivity, εr, of the object

is in the range of [20.1, 23.2] and [62.0, 65.1], the relative

permeability µr = 1, and the electric conductivity, σ, is in the

range of [0.83, 1.10] and [4.1, 4.2] (S/m). For the host medium,

εr is in the range of [8.1, 8.2], µr = 1, and σ is in the range of

[0.43, 0.57] (S/m). The heat conductivity of the host medium

is 0.5 (W/m/K), and [0.56, 0.60] (W/m/K) for the object.

We build a dataset containing 1000 sets of training

data and 200 sets of testing data. Training data include

single homogeneous and inhomogeneous objects, while testing

data have multiple objects in the computational region.

So, the testing geometries are generalized versions of the

training ones, with enhanced complexity. Some representative

geometries from the training and testing sets are shown in

Fig. 4, where different colors represent different material

properties.

Fig. 4. Samples of training (first line) and testing (second line) geometries.

The inputs of the PIUN are the dissipated power

density Q (W/m3), computed by FDTD, and the heat

conductivity k (W/m/K) of the computational domain. For

each input case, the output of the PIUN is the steady-state

temperature distribution in the computational domain. To

evaluate the accuracy of the prediction, we use a forward-time

centered-space (FTCS) based thermal solver [13] to generate

ground-truth data for the testing cases. To clarify, these

ground-truth data are generated for validation purposes, not

for training, since the training is unsupervised. The relative

error (Erel) is computed by:

Erel =
1

NxNy

Nx
∑

i=1

Ny
∑

j=1

|Tp(i, j)− Tr(i, j)|

Tr(i, j)− Tb

, (11)

where Tp is the prediction from the PIUN, Tr is the result from

FTCS, Tb is the external temperature, Nx and Ny represent

the number of cells in the x and y direction. The mean relative

error of the whole testing set is 3.68 × 10−4 for the trained

PIUN. Fig. 5 shows several testing cases for the PIUN.

(a) (b) (c)

Fig. 5. Testing cases for the PIUN, showing: (a) heat conductivity
k (W/m/K), (b) dissipated power density Q (W/m3), and (c) predicted
temperature distribution T (K).

It takes on average 0.031 seconds for the PIUN to produce

one steady-state temperature distribution on an Intel-i5 CPU.

On the other hand, the FTCS method takes 22.74 seconds

to simulate one testing case on the same CPU. Besides,

COMSOL Multiphysics (a finite element method solver) takes

9.13 seconds to simulate such two-dimensional cases with the

default mesh (23394 cells in total). These comparisons show

the excellent computational efficiency of the proposed PIUN.

V. CONCLUSION

We demonstrated the feasibility of coupling FDTD to

a neural network for electromagnetic-thermal analysis. The

proposed network, a PIUN, replaced a thermal solver to

produce the steady-state temperature distribution in geometries

involving arbitrarily shaped lossy dielectrics within host media,

accurately and efficiently. Thus, electromagnetic-thermal

problems were solved by a single FDTD solver combined with

the PIUN. Moreover, the PIUN was trained in an unsupervised
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manner, eliminating the cost of generating ground-truth

data. This work is a promising step towards PINN-based

multiphysics solvers for a wide range of applications, including

electrothermal analysis of integrated circuits and design

optimization of hyperthermia applicators.
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