
Adaptive Generation of Rational Function Approximations for
Microwave Network Parameters

Andria Lemus, Arif Ege Engin
San Diego State University, USA

alemus6970@sdsu.edu, aengin@sdsu.edu

Abstract — This paper introduces a new method for rational
function approximation of measured or simulated microwave
network parameters. The proposed adaptive generation (AG)
approach allows estimation of the model order for a given error
tolerance and does not require any initial estimates or adjustment
of hyperparameters. We present an implementation of AG using
the recently developed orthogonal rational approximation (ORA)
method.
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I. INTRODUCTION

A common approach that is used to design and characterize
microwave components is to perform frequency-domain
electromagnetic simulations and measurements. Integration of
these microwave network parameters into a circuit simulator
can be achieved by approximating the frequency-domain data
with a rational function. Methods available to generate rational
function approximations from tabulated simulated or measured
data include the widely popular vector fitting [1], Loewner
framework [2], Sanathanan-Koerner iteration [3], RKFIT [4],
ORA [5], and AAA (adaptive Antoulas-Anderson) [6], [7], [8]
(see, e.g., [9] for a survey of additional methods).

The main theme of this paper is fitting a rational function
of the Laplace variable s

R(s) =
F (s)

a(s)
=

∑n
i=0 Fis

i∑n
i=0 ais

i
(1)

to measured or simulated data Hi at l frequency points si. The
transfer function in (1) represents a blackbox macromodel that
characterizes the component, where the roots of the numerator
and denominator are denoted as zeros and poles respectively
[10]. The objective is to solve the nonlinear least squares
problem

minimize
l∑

i=1

||R(si)−Hi||2F (2)

where we use the Frobenius norm. The data Hi and the
numerator coefficients Fi are matrices in general, whereas
a scalar denominator polynomial a(s) will be assumed. In
the following, the compact expression F (s)/a(s) ≈ H will
be used to denote the least squares problem. Typically, the
linearized version F (s) ≈ a(s)H is solved iteratively in a
heuristic approach.

The modeling methods outlined earlier continue to be
used and developed to analyze a variety of microwave
systems. For example, in [11], the scattering parameters of a

printed circuit board with 38 embedded vias were obtained
using the Loewner matrix framework with a new stability
enforcement approach. In [12], the calculated S-parameters of
64 coupled transmission lines, and the simulated S-parameters
of five 22-port stripline structures with multiple layers, were
fit with a passivity-enforced Loewner matrix model. These
macromodeling techniques may also be used for applications
like parametric modeling in [13], where vector fitting was used
in the design of microwave filters.

The rational function approximation problem has a long
and broad history, so clarifying the significance and novelty
of this approach is a pressing issue at this point. The
paper will outline a new adaptive generation (AG) approach
that is perhaps surprising in its simplicity to linearize the
least-squares problem of (2). AG also provides an estimation
of the model order n – an often overlooked but nevertheless
important problem. The monomial basis in (1) is, of course,
ill-conditioned for large orders. AG is applicable to the
well-trusted partial-fraction or barycentric bases, as well as
the recent data-centered orthogonal rational basis [5], which
will be the method used in this paper.

II. CURRENT APPROACHES FOR RATIONAL FUNCTION
APPROXIMATION

There are two major approaches for rational function
approximation:

1) Sanathanan-Koerner (SK) iteration: Various
implementations include RKFIT, stabilized SK,
and the popular vector fitting algorithms. SK iteration
is known to be accurate for approximating data with
noise. The model order is fixed.

2) Adaptive Antoulas-Anderson (AAA): The barycentric
basis of AAA comes from the Loewner framework.
AAA is known to be accurate for closed-form functions
or data without noise. The adaptive nature of AAA
allows to estimate the model order.

The new adaptive generation (AG) approach in this paper
can be considered as the third approach. They are all based
on an iteratively updated polynomial â(s) as

R(s) =
F (s)

a(s)
=

F (s)
â(s)

a(s)
â(s)

=

∑n
i=0 Fis

i∑n
i=0 âisi∑n
i=0 aisi∑n
i=0 âisi

, (3)

where the linearized least squares problem becomes
F (s)/â(s) ≈ Ha(s)/â(s). The choice of the iteration
polynomial â(s) is critical in the convergence of the linearized
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problem to the solution of the actual non-linear problem
F (s)/a(s) ≈ H . This choice is the main difference between
the three approaches.

A. Sanathanan-Koerner (SK) Iteration

In SK iteration, typical initial choices for the iteration
polynomial are â(s) = 1 or an estimate with slightly damped
complex roots. The monomial basis in (3) is of course not
suitable for large-order approximations and replaced with
a better-conditioned basis such as a partial fraction (vector
fitting) or an orthogonal rational basis (RKFIT or ORA [5]).
For the example of vector fitting, the rational function can be
expressed in barycentric form as

R(s) =

F (s)
â(s)

a(s)
â(s)

=
K0 +

∑n
i=1

Ki

s−p̂i

k0 +
∑n

i=1
ki

s−p̂i

(4)

where p̂i are the roots of â(s). The solution of the linearized
problem yields an updated denominator a(s). In the next
iteration, this updated denominator a(s) is used in place
of â(s) and a new least squares problem is solved. If
â(s) approaches a(s), the linearized problem F (s)/â(s) ≈
Ha(s)/â(s) converges to the solution of the actual nonlinear
problem F (s)/a(s) ≈ H . Note that a(s) and â(s) have the
same polynomial degree n. A disadvantage of SK iteration is
that the model order is fixed (i.e., n is assumed to be known.)

B. Adaptive Antoulas-Anderson (AAA)

The AAA algorithm is based on choosing zeros of â(s)
from a subset of the l frequency points as p̂i = ŝi, resulting
in the rational function in barycentric form

R(s) =

F (s)
â(s)

a(s)
â(s)

=

∑n
i=0

biĤi

s−p̂i∑n
i=0

bi
s−p̂i

. (5)

Evaluated at such a node s = ŝi, it can be seen that the
barycentric form yields the interpolatory result R(ŝi) = Ĥi

(where Ĥi is the data provided at frequency ŝi), independent of
the weight bi, as long as bi ̸= 0. The weights bi are calculated
to fit to the remaining l− (n+1) frequency points by solving
the linearized least squares problem as in SK iteration. Then
the frequency point with the maximum deviation is selected
as the next node ŝn+1, and the iteration continues until a
certain error tolerance is reached. This adaptive nature of AAA
allows to estimate the model order, as each iteration increments
the model order by one. This is an important feature, as
a higher-than-necessary model order can result in spurious
poles (poles with very small residues), affecting the model’s
accuracy.

III. ADAPTIVE GENERATION: ADAPTIVE ORDER
ESTIMATION OF AAA + ACCURACY OF SK ITERATION

The denominator in the barycentric form of AAA (5) has
no constant or linear terms, whereas SK in (3) has the linear

term k0. Consider now a slight modification of the barycentric
form by adding a linear term sk∞ to the denominator:

R(s) =

F (s)
â(s)

a(s)
â(s)

=
K0 + sK∞ +

∑n−1
i=1

Ki

s−p̂i

k0 + sk∞ +
∑n−1

i=1
ki

s−p̂i

(6)

The rational function representation in the barycentric form
of (6) is the basis for the proposed adaptive generation (AG)
algorithm. Unlike SK iteration, the order n is not assumed to
be known and can now be estimated in an adaptive manner
similar to AAA. However, the iterations are aimed at achieving
â(s) ≈ a(s), similar to SK. The main feature of AG is that the
order of a(s) is one more than the order of â(s), due to the
addition of the linear term. Hence each iteration increments
the model order n by one. In contrast, SK iteration maintains
the same model order over iterations. The proposed algorithm
follows these main steps:

1) Start with n = 1 and â(s) = 1.
2) Solve the linearized problem F (s)/â(s) ≈ Ha(s)/â(s)

to calculate a(s).
3) Solve the linear problem F (s)/a(s) ≈ H to calculate

F (s) using a(s) from Step 2 and the residual error ϵ.
4) If n < nmax and ϵ > ϵmax, set n = n+1, â(s) = a(s),

and go to Step 2.
Note how Steps 2 and 3 are used to solve the denominator

and numerator, respectively. Even though both of them can
be obtained from the linearized problem in Step 2, separately
solving the linear problem in Step 3 increases the accuracy,
similar to the pole and residue extraction steps in vector fitting.

The accuracy of the linearized problem F (s)/â(s) ≈
Ha(s)/â(s) to solve the actual nonlinear problem
F (s)/a(s) ≈ H depends on the convergence of â(s) to
a(s). In AG, increasing the model order in each step is
meant to provide a better approximation of â(s) to a(s).
This heuristic goal is the same as in SK iteration. AAA,
on the other hand, relies on the interpolatory nature of the
barycentric form. Obviously convergence of â(s) to a(s) is
not expected in AAA, as the roots of a(s) will in general
not be a subset of the frequency points. On the other hand,
each iteration increases the number of frequency points where
interpolation occurs, with the goal of reaching a better least
squares approximation overall. This interpolatory nature of
AAA makes it suboptimal for least squares approximation
of data including noise. The new AG approach therefore
promises to incorporate the powerful features of both SK and
AAA as shown in Table 1.

IV. NUMERICAL RESULTS

Two examples were used to compare the performance of
AG with vector fitting using the vectfit3 MATLAB package
with lower-triangular parameter values. This was done in order
to match the operations performed in vectfit3. The noisy
scattering parameter data from a stripline, which was measured
from 100 MHz to 110 GHz on a vector network analyzer, was
modeled up to an order of 50, corresponding to 50 poles, as
depicted in Figure 1. As shown in Figure 2, at model orders
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Table 1. Comparison of Sanathanan-Koerner (SK), adaptive Antoulas-Anderson (AAA), and the proposed adaptive generation (AG) approaches. Superscript (t)
represents the values at the tth iteration.

Method Model Order Noninterpolatory Iteration Algorithm (t → t+ 1)

SK Fixed Yes
K

(t)
0 +

∑n
i=1

K
(t)
i

s−p̂
(t)
i

k
(t)
0 +

∑n
i=1

k
(t)
i

s−p̂
(t)
i

→
K

(t+1)
0 +

∑n
i=1

K
(t+1)
i

s−p̂
(t+1)
i

k
(t+1)
0 +

∑n
i=1

k
(t+1)
i

s−p̂
(t+1)
i

AAA Adaptive No
∑t

i=0

b
(t)
i

Ĥi
s−p̂i∑t

i=0

b
(t)
i

s−p̂i

→
∑t+1

i=0

b
(t+1)
i

Ĥi
s−p̂i∑t+1

i=0

b
(t+1)
i
s−p̂i

AG Adaptive Yes
K

(t)
0 +sK

(t)
∞ +

∑t−1
i=1

K
(t)
i

s−p̂
(t)
i

k
(t)
0 +sk

(t)
∞ +

∑t−1
i=1

k
(t)
i

s−p̂
(t)
i

→
K

(t+1)
0 +sK

(t+1)
∞ +

∑t
i=1

K
(t+1)
i

s−p̂
(t+1)
i

k
(t+1)
0 +sk

(t+1)
∞ +

∑t
i=1

k
(t+1)
i

s−p̂
(t+1)
i

higher than about 43, the approximation by AG had lower
RMS error than that of vector fitting for the two-port model.
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Fig. 1. Example 1: Noisy stripline data measured at 5001 frequency points
was fitted using AG
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Fig. 2. Example 1: RMS error for AG was lower than that of vector fitting
at higher orders

A second example, shown in Figure 3 and Figure 4
depicts the scattering parameters from a cavity resonator
resulting from a full-wave simulation using Sonnet at ten
arbitrarily-located ports. In a comparison of model orders
up to 100, Figure 4 shows that models with orders above
approximately 85 had lower RMS error when constructed with
AG than with vector fitting.
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Fig. 3. Example 2: Simulated cavity resonator data at 10 ports with 600
frequency points was fitted using AG
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Fig. 4. Example 2: At higher orders, AG had a lower RMS error when
compared to vector fitting

Table 2. Comparison of Total Processing Times for Example 1 and Example
2 Using Different Blackbox Macromodeling Methods

Macromodeling Example 1 Example 2
Method Processing Time

[s]
Processing Time
[s]

AG 2.3896 12.0952
Vector Fitting (VF) 67.0386 611.3338
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As shown in Table 2, the AG model was able to process the
data for both examples in approximately 2.4 and 12.1 seconds
respectively, compared to the 1.1 minutes and 10.2 minutes
required to run vector fitting. The vector fitting algorithm was
set to use 20 iterations per model order. Conversely, AG did
not require these SK-like iterations at each model order. The
data was processed using MATLAB on a laptop with an Intel
Core i7 CPU.

V. DISCUSSION

A complete convergence analysis is not yet available for
SK iteration [4] or AAA [6]. The residual error does not
monotonously decrease with the number of iterations or the
number of poles. A theoretically better-studied method is the
Levenberg-Marquardt approach that leads to the Whitfield
estimator [14] for rational functions. Alternatively, fitting
the derivative of the objective function in the instrumental
variable approach aims to find the local minima [15]. These
approaches have however not found widespread use, as they
are either considered to be slow [16], [17] or not a significant
improvement over SK iteration [18]. The convergence of AG
especially in the presence of noise requires further research.
Vector fitting as an example may fail to locate the poles for
high noise levels [19] due to the presence of spurious poles.
We plan to study the performance of AG in avoiding spurious
poles for such data.

A commonly desired property for the rational function is
that it should have real coefficients and stable poles. This
is achieved in the current implementation by the underlying
ORA algorithm. Passivity on the other hand is typically not
preserved in rational approximation of passive microwave
network parameters. It can be enforced if necessary as
a post-processing step by perturbation of the residues, as
commonly done in existing rational approximation approaches.

VI. CONCLUSION

We presented a new adaptive generation (AG) approach
to linearize the least squares problem and estimate the
model order for rational function approximation. AG is an
alternative to the celebrated Sanathanan-Koerner (SK) and
adaptive Antoulas-Anderson (AAA) algorithms to compute
rational function approximations. While further testing is
needed, initial results are promising in generating fast and
accurate rational approximations by the new AG approach.
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