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Abstract — The problem of scattering by periodic structures
composed of waveguide-like unit cells can be tackled
from a Mode-Matching perspective. Existing approaches for
hybridisation through this technique using Floquet modes and the
2D Finite Element Method are based on full-wave representations
of the field and do not consider any efficiency improvements
in a wide-band frequency sweep, a typical case of application.
In this work we present an alternative, holistic fast formulation
directly derived from scalar potentials, which is also frequency
independent up until the last step of the process of computing
the generalised scattering matrix. It is formulated for incident
angles normal to the periodicity plane, which are typically those
first considered in the design workflow.

Keywords — Frequency Selective Surfaces, Polarisation
Selective Surfaces, Mode-Matching, Finite Element Method

I. INTRODUCTION

Frequency Selective Structures (FSSs) and Polarisation
Selective Structures (PSSs) [1] are one of the areas of research
in microwave engineering currently registering a significant
amount of activity. This is mainly due to their capability
of modelling complex frequency responses from relatively
simple geometries, which can be manufactured using novel
additive techniques [2]. These structures are typically defined
as periodic grids derived from a unit cell which is replicated
along a plane, and simulated taking electromagnetic plane
waves as the incident and transmitted fields [3].

On the one hand, the Floquet theorem aids in modelling,
from a Computer Aided Design (CAD) perspective, spatially
limitless plane waves considering a single unit cell from
the infinite grid. On the other hand, waveguide theory can
help in describing the electromagnetic field inside thick,
waveguide-like cells composed of one of more sections, using
modal analysis [4] and, for instance, a numerical technique
such as the two-dimensional Finite Element Method (2D-FEM)
to compute the modes [5]. This approach is one of the
most preferred thanks to its robustness and ability to deal
with arbitrary cross-sections. Other possible techniques for
hybridisation are, for instance, analytic formulas for canonical
waveguides and Boundary Integral-Resonant Mode Expansion
(BI-RME) [6].

To integrate both of these tools, Mode-Matching [7],
a technique for characterising discontinuities through a
Generalised Scattering Matrix (GSM) [8], has been proposed
in the past, obtaining very satisfactory results. This hybrid
approach combines the strength of Floquet waves with said
numerical methods, using a modal field expansion on both
sides of the step and computing mode-by-mode couplings. In
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Fig. 1. A generic Frequency Selective Surface composed of waveguide-like
(thick) unit cells laying on the xy plane filled by an homogeneous dielectric.
The incidence angle is normal to the surface, i.e. is aligned with the z direction.

this regard, existing works provide a general way for obtaining
modal cross-products in combination with FEM by using the
transversal components of the fields [9], [10].

In this work we propose a convenient formulation
for hybridizing Floquet waves with 2D-FEM through
Mode-Matching. Intended for fast sweeps and to aid in the
optimization of FSS and PSS, we take scalar Finite Elements
instead of vectorial elements in the discontinuity plane as the
starting point, considering the smallest possible representation
of the problem, and isolate the frequency dependence so that,
for incident angles equal to the normal direction, results are
obtained fast and accurately. A handful of results are discussed,
as well as the computational performance of the method.

II. BACKGROUND

First, we will define the problem in both sides of the
discontinuity, later to be integrated in a Mode-Matching
scheme. The conventionalism given in [6] serves as a
starting point, where Floquet waves are described using scalar
potentials, in analogy to what was first proposed in waveguide
theory [4].

A. Floquet modes

Appling the Floquet theorem to a unit cell yields
generalised Transversal Electric (TEmn) (ψ = hz) and
Transversal Magnetic (TMmn) (ψ = ez) modes, which are
solution to the equation ∆tψmn+k2

mnψ = 0 in the rectangular
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domain a × b with periodic boundary conditions imposed on
the edges of the unit cell (see Fig. 1):

ψmn(x, y) =
−j

kmn
√
ab
e−j(kmx+kny). (1)

where ∆t is the transversal Laplacian operator. The parameters
(see also Fig. 1) are

km = k0 sin θi cosφi +
2mπ

a
, (2)

kn = k0 sin θi sinφi +
2nπ

b
, (3)

kmn =
√
k2
m + k2

n, (4)

where k0 = ω
√
µ0ε0 is the vacuum wavenumber and {m,n}

are integers in the range (−∞,∞), which must be truncated to
a finite amount of terms for numerical purposes. It is assumed,
for the sake of simplicity and without loss of generality for the
remaining aspects of the formulation, that the angle between
both periodicity directions is 90o (and thus the unit cell is
a rectangle of dimensions a × b, using a coordinate system
x, y at the rectangle corner). The complex z-wavenumber for
each Floquet mode is computed as k(f)

z =
√
k2

0 − k2
mn for

z-variation given by e±jkzz .
If there is normal incidence, i.e. θi = 0 as in Fig, 1,

then the two first propagating modes, TE00 and TM00, can
be considered as solutions of the equation ∆tψ00 = 0, having
the following potential functions:

ψ
(TE)
00 =

−x√
ab
, ψ

(TM)
00 =

−y√
ab
. (5)

Crucially, normal incidence also makes the frequency
dependence vanish from km and kn, and, as a result, from ψmn
in (1). Hence, in this case modal functions may be considered
only once for a wideband simulation.

B. Waveguide modes
Modes in homogeneous waveguides enclosed by perfect

conductor can be obtained by solving the 2D Helmholtz
equation ∆tψ + k2

cψ = 0 in Ω as in Fig. 1 (again, ψ = hz
for TE modes and ψ = ez for TM modes) with the following
boundary condition on the surrounding conductor:

∇tψTE · n̂|ζ = 0, ψTM |ζ = 0. (6)

The equation is to be solved using scalar 2D-FEM, where
ψ is discretized and obtained as a weighted sum of basis
functions li: ψ =

∑K
i=1 vili, where vi are the Degrees

of Freedom (DOFs). The final eigenvalue problem is (S −
k2
cT )v = 0, where matrices S and T have the following

entries ij [5]:

Sij =

∫∫
Ω

∇li · ∇lj dΩ, Tij =

∫∫
Ω

lilj dΩ. (7)

Note that modal fields obtained through this approach do
not have a frequency dependence in any case, as opposite to
other formulations that compute the complex z-wavenumbers
k

(w)
z =

√
k2 − k2

c as the eigenvalues of the problem (taking
harmonic propagation e±jkzz). k = ω

√
µε is the wavenumber

of the homogeneous medium inside the waveguide.

III. MODE-MATCHING FORMULATION

A. Projecting Floquet modes onto FEM basis functions
To compute the modal cross-products in Mode-Matching,

it is first necessary to project all the information to the same
function space. We start from (1), for which we will obtain,
for each of the Floquet modes, the values of their DOFs in the
2D-FEM scheme. For a generic mode of indices mn:

K∑
i=1

uili =
−j

kmn
√
ab
e−j(kmx+kny). (8)

Now we apply Galerkin, which yields the weak form of
the previous equation∫∫

Ω

uililj dΩ =
−j

kmn
√
ab

∫∫
Ω

e−j(kmx+kny)lj dΩ. (9)

This represents a linear system of equations, which can be
written as:

Tumn = fmn, (10)

where T is the same matrix as in (7) and f a column vector
with index i obtained through

fmn,i =
−j

kmn
√
ab

∫∫
Ω

e−j(kmx+kny)li dΩ. (11)

B. Extracting the frequency dependence in Mode-Matching
The step discontinuity problem at z = 0 in Fig. 1 can be

solved using Mode-Matching [7], [8]. The fields are expanded
at each side of the step with the waveguide (subscript w) and
Floquet (subscript f ) modes, respectively, using amplitudes
a for the incident and b for the reflect waves. Then, the
boundary conditions are applied by means of a Galerkin
method, assuming

∫∫
Ω
∇ψi · ∇ψi dΩ = 1 for the waveguide

modes (note that (1) and (5) already satisfy this), leading to:{
(af + bf ) = Xc (aw + bw)

X (af − bf ) = (aw − bw)
, (12)

To minimise the amount of operations needed to compute
each frequency point we separate the cross-product matrix X
appearing in (12) into a frequency-independent normalized
matrix X̄ , so that X = Z

1/2
w X̄Y

1/2
f and Xc =

(Z
1/2
w X̄∗Y

1/2
f )T , (superscript T indicating transpose, and ∗,

complex conjugate). Z and Y = Z−1 are diagonal modal
impedance and admittance matrices for the corresponding
modes, both frequency dependent. All impedances might be
obtained with the following formulae, where η =

√
µ/ε, and

ξ identifies with both k(f)
z and k(w)

z [8]:

ZTE,i =
kη

ξi
, ZTM,i =

ξiη

k
, Z00 = η. (13)

Z00 refers to the impedance of the TE00 and TM00 Floquet
modes, which have a cutoff wavenumber k00 = 0.

Finally, the GSM from which transmission and reflection
parameters for Floquet modes can be extracted is directly
obtained the following way, where F = 2(Iw + XXc)

−1

(I being the identity matrix of appropriate dimensions):

SGSM =

[
XcFX − If XcF

FX F − Iw

]
(14)
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Fig. 2. Transmission and reflection parameters of the TE00 and TM00 modes
for the FSS from [12], shown in the figure. The dimensions are a = b = 10
mm, l = 4.04 mm and w = 2.0 mm. The metal thickness is t = 1.0 mm.

C. Normalised frequency-independent cross-product matrix
for normal incidence

Lastly, thanks to using modal functions derived from
scalar potentials, we now show how to compute the
frequency-independent normalised cross-product matrix X̄ .
We can arrange Floquet modes depending on their nature,
so that u00 = [u

(TE)
00 ,u

(TM)
00 ], which must be considered

separately, uTE = [u
(TE)
i ]i=1,...,NTE

, and uTM =

[u
(TM)
i ]i=1,...,NTM

, where NTE and NTM are the total
number of Floquet TE and TM modes considered for the
Mode-Matching. An analogous procedure can be done for
waveguide eigenfunctions vi. Through this convention it is
possible to compactly define X̄ as a block matrix:

X̄ =

[
vTTERu00 vTTESuTE vTTERuTM

0 0 vTTMSuTM

]
, (15)

where matrix S is the same as shown in (7) and R has the
following entries ij [11]:

Rij =

∫∫
Ω

∇tli ×∇tlj · ẑ dΩ. (16)

It is important to stress that, using the proposed scheme,
X̄ must be computed only once for a single cross-section,
only having to recompute X and (14) for each frequency,
substantially reducing the computational cost. The proposed
holistic approach also allows for efficiently reusing the
matrices from (7) in (10) and (15), thanks to considering every
step of the problem as a part of its total.

IV. RESULTS

To test the formulation, first we take a simple example
from the literature, a classic unit cell from [12]. Its authors
emphasize that the FSS is made of a thick metallic screen, i.e.,
the waveguide effect is not negligible. The parameters for the
slots, shown as an inset in Fig. 2 are a = b = 10 mm, l = 4.04
mm and w = 2.0 mm. The thickness is t = 1.0 mm. In this
figure, the reflection (R) an transmission (T ) parameters for the
first two propagating modes RTE00

, TTE00
, RTM00

, TTM00
are

l

r

w

a

Fig. 3. Transmission and reflection parameters of the TE00 mode for the
FSS shown in the figure, taken from [6]. The dimensions are w = 160 µm,
L = 570 µm, a = b = 810 µm and r = 40 µm, and the metal thickness is
t = 10 µm.

compared with the presented method against CST Microwave
Studio (CST MWS). Cross-coupling between these modes is
not shown due to being negligible. A very good agreement is
found between simulations.

A more challenging example from a simulation standpoint
is the shape in Fig. 3 (inset). In this problem, which was
taken from [6], the unit cell is a cross with rounded edges,
which serves as a quasi-optical filter. A wide band analysis was
desired, which, along with the high amount of Floquet modes
required for simulation, represents a challenge for commercial
3D-FEM software. The dimensions of the slots are w = 160
µm, L = 570 µm, a = b = 810 µm and r = 40 µm. The
thickness of the metal is t = 10 µm.

The results shown in Fig. 3 refer to the TE00 response
in transmission and reflection, which are identical to the
TM00 due to the symmetry of the problem. The formulation
was also compared against CST MWS, obtaining very
satisfactory results for the entire band. To perform a fair
comparison, first-order symmetry properties of the modes were
not considered as an optimisation for the Mode-Matching.
Crucially, CST MWS took on average around 30 s to compute
each frequency point considering 122 Floquet modes (up
until modes TE/TM±3 ± 3, which have a cutoff frequency of
1571 GHz), while the proposed method took only 0.01 s for
each frequency point, considering 402 Floquet modes and 32
waveguide modes for the Mode-Matching procedure, thanks
to the presented isolation of the frequency dependence.

V. CONCLUSION

Mode-Matching provides a robust and efficient way of
analysing polarisation or frequency selective structures with
waveguide-like unit cells. We have shown that it is possible,
using scalar potentials and under normal incidence, to extract
the frequency dependence from the formulation. This holistic
approach greatly optimizes the entire process of simulating a
wide-band response and can serve as a tool for the first stages
of optimization of various designs, as shown in the examples.
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