
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS 1

On Searching All Solutions of Microwave Filter
Synthesis Based on Interval Arithmetic
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Abstract— In this letter, the numerical interval Newton algo-
rithm (NINA) is introduced into coupling matrix (CM) synthesis
(reconfiguration) for the first time. In particular, all existing real
solutions to microwave filter CM can be found with mathematical
certainty, which provides designers with the flexibility to select
the most suitable configuration. Also, CM limits can be directly
imposed in the synthesis process to only compute solutions in the
specified range. This synthesis process is independent of initial
variable values, and the global convergence is theoretically guar-
anteed. Moreover, NINA is a deterministic method that can verify
the existence or nonexistence, uniqueness or non-uniqueness of
a given CM topology with the desired filtering performance.
Furthermore, the processes dealing with both well-determined
and over-determined systems are discussed to cover the synthesis
of CMs with diverse configurations. One practical sixth-order
dielectric filter with parasitic couplings is exemplified to validate
the effectiveness of the presented synthesis approach.

Index Terms— All solutions, coupling matrix (CM), filter syn-
thesis, interval arithmetic.

I. INTRODUCTION

THERE are increasingly stringent requirements on
microwave filters in modern terrestrial and space-based

communication systems, such as lightweight and compact
size. Consequently, parasitic couplings become inevitable in
extremely limited space, and filter topologies are requested
to be diversified to adapt to layout constraints. Therefore, the
synthesis (reconfiguration) of filters with irregular topologies
becomes necessary.

The analytical synthesis based on the specific sequence of
similarity transformations is well-known [1], featuring very
high efficiency. However, sometimes it may be difficult or
even impossible to derive the sequence of matrix rotations
via mere observation for each given topology. Hence,
general optimization-based synthesis has gained widespread
popularity [2], [3], [4], [5] in practice, but local optimizations
rely much on initial values and easily fall into local minimums.
To tackle this issue, global optimization algorithms were
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employed in [6] and [7]. Besides, numerical processes based
on homotopy continuation [8] and Remez-like iterations [9]
were presented to solve certain non-canonical configurations.
These optimization and numerical approaches discussed
above aim at obtaining only one solution, unless the variables
are randomly initialized many times. Nevertheless, finding
all the solutions are desired in many cases to help designers
select the one that best fits the implementation technology
and physical layout. Fortunately, the Groebner basis was
exploited to exhaustively derive all the synthesis solutions
in [10]. Whereas the mathematical details are not fully
disclosed. This method has been embedded in a software
package [11], but it is not easy to customize some target
topologies, especially when adding limits to only synthesize
solutions in a prescribed range.

In this letter, the numerical interval Newton algorithm
(NINA) [12] is applied to microwave filter coupling matrix
(CM) synthesis for the first time. This is a rather simple
and straightforward mathematical process that is fully dis-
closed and can be easily implemented using the platform
INTLAB [13] developed for MATLAB [14]. Besides, the
computation results globally converge without the need for
initial guesses for variables [15]. Most importantly, NINA
finds ALL solutions and can prove the existence or nonex-
istence, uniqueness or non-uniqueness of a specified filter
topology [16], [17]. Thereby, designers can determine the fea-
sibility of the target configuration and select the most suitable
solution. Also, NINA can proceed with added limits to only
synthesize solutions in a prescribed range, thus finding the
most practical one with the least time. To accommodate more
topologies, the process of dealing with well-determined and
over-determined equations using NINA is discussed. Finally,
a sixth-order dielectric filter with parasitic coupling values
limited in a preset range is used to verify the effectiveness
of the presented method.

II. INTERVAL ARITHMETIC

A. Interval Number System

Interval arithmetic is a well-established mathematical field
[16], in which the values participating in the computation are
represented with closed intervals instead of single values. For
example, an interval variable can be denoted as the capital
letter X = [X, X]. Here, X and X̄ are the left and right
endpoints of X , respectively. When the width of X (i.e., X–
X) is smaller than the preset error, x = (X + X )/2 can be
regarded as the solution.

The operation rules of intervals are well documented in [17],
and both vectors and matrices can be in the interval form. All
these basic arithmetic rules have been defined in INTLAB.
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B. Interval Newton Method
The NINA algorithm, which can be viewed as a combination

of Newton’s method and interval arithmetic, has been widely
applied in many other fields, such as rounding error analysis
and computer-assisted proofs [17]. It is a powerful tool to
compute all real roots of nonlinear equations of the form

F(x) =


f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0
...

fn(x1, . . . , xn) = 0.

(1)

The process of NINA is like gradually contracting the wide
interval ranges of variables to final convergent solutions. The
starting n-dimensional real interval vector should be initialized
as X0

= [X1, X̄1]×· · ·×[Xn, X̄n]. Modifying single numbers
in the conventional Newton method to intervals, the iterative
approximation of the root interval is

K
(
X i)

= yi
− F ′

(
X i)−1

· F
(
yi) (2)

where X i is the interval vector in the i th iteration and yi

is a vector that is in the set of X i . Usually, yi is set as
the midpoint of X i , i.e., yi

= mid(X i ). F ′(X i ) denotes the
interval extension [17] of the Jacobian matrix F ′(x) over X i .
The Krawczyk method [12] can be used to approach the term
F ′(X i )−1, and then (2) can be rewritten as

K
(
X i)

= yi
− Y · F

(
yi)

+
{

I − Y · F ′
(
X i)}(X − yi)

Y = mid
(
F ′

(
X i))−1

. (3)

Comparing K (X i ) and X i , here are three cases [17] as
follows.

1) If X i
∩ K (X i ) = empty, there is no solution in X i , and

it can be pruned.
2) If K (X i ) ⊆ X i , there is a unique solution in X i , and

push X i into the solution list Sol.
3) Otherwise, there is no conclusion. When K (X i ) exists,

update the interval vector as X i+1
= K (X i )∩ X i . If the width

of X i+1 is smaller than the preset error value (such as 1e −

3), push it into Sol. If not, send X i+1 into the next cycle to
compute the corresponding K (X i+1) using (3). When K (X i )

is not defined, bisect X i from the widest variable interval into
X i+1,1 and X i+1,2, and deliver them into the next iteration.

For each interval, repeat the above cycles until the interval
list is empty, and then the midpoints of the intervals in Sol
are the roots of the equation system. If there is no interval in
Sol, the equation system has no solution. The convergence
of this process is mathematically guaranteed [15]. When
NINA is applied to topology synthesis, to make (3) proceed
properly, the constructed mathematical model should be well-
determined (discussed later in Section III), and its correspond-
ing Jacobian matrix needs to be full rank. If the assigned
target topology is of no solution, all the subdivided interval
vectors will be pruned from the queue finally according to
case 1); thus, the empty list Sol is returned. The flowchart
of the IN algorithm is depicted in Fig. 1. In this process,
the branch process helps subdivide the intervals, while the
Krawczyk operator determines the existence of roots in each
interval and decides whether to further contract or prune the
current interval.

Fig. 1. Flowchart of the NINA algorithm.

III. SYNTHESIS WITH INTERVAL NEWTON METHOD

A. Well-Determined Systems
In well-determined systems, the number of variables is

exactly equal to the number of equations. Take a fifth-order
filter with the return loss RL = 20 dB and transmission zeros
(TZs) ωtz = [2.4, −1.6, −3] as an example. The target filter
topology is named “quintet-like,” which is not included in [11],
and the three solutions calculated with NINA are displayed
in Fig. 2(a)–(c). Here, the equation system MT = QT Mc Q
is established based on similarity transforms [10], where Q is
the unknown orthogonal transform matrix, Mc is the canonical
CM in the folded form, and MT represents the CM in the target
quintet-like form. Q is in the form of

Q =


1 0 0 0 0
0 1 0 0 0
0 0 Q′ 0 0
0 0 0 1 0
0 0 0 0 1

 Q′
=

 x1 x2 x3
x4 x5 x6
x7 x8 x9

. (4)

The nonlinear equations F(x) in (1) consist of

∀(i, j) ∈ T,
(
QT Mc Q

)
i j = 0

QT Q = I (5)

where T contains the indices of the couplings that should
be zero in a target topology. In this quintet-like example, the
equations are

MT,13 = 0, MT,24 = 0, MT,34 = 0(
QT Q

)
3,4 = 0,

(
QT Q

)
3,5 = 0,

(
QT Q

)
4,5 = 0(

QT Q
)

3,3 = 1,
(
QT Q

)
4,4 = 1,

(
QT Q

)
5,5 = 1. (6)

Initialize the variable interval as X = [−1, 1] × · · · [−1, 1].
Solving (6) by following the procedures listed in Fig. 1, the
three solutions are obtained after 32 iterations (the coupling
sign symmetry has been removed [10]). There are 936 intervals
at most in the iterative process. The calculation based on
MATLAB takes 66.8 s on an Intel Core i7 processor at
2.90 GHz. With the further acceleration of this algorithm in the
future, the computation time can be considerably shortened.
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Fig. 2. (a)–(c) Three synthesis solutions of the fifth-order quintet-like
example. The black numbers denote intercoupling values, while the red
numbers represent self-coupling values. (d) Synthesized responses of the
folded form CM and the obtained CM in the extended box form. Dashed
line denotes the folded form CM. Solid line denotes the extended box CM.

Fig. 3. (a)–(d) Four synthesis solutions of the sixth-order extended box
example. The black numbers denote intercoupling values, while the red
numbers represent self-coupling values.

It can be observed that M35 equals zero in Fig. 2(a), which
forms a simplified topology. Their responses in the normalized
lowpass domain shown in Fig. 2(d) are the same as that of Mc,
which has validated these solutions.

B. Over-Determined System

Generally speaking, the standard NINA algorithm is aimed
to solve well-determined systems. Nevertheless, the equation
systems in CM synthesis are not always well-determined but
are sometimes over-determined (the number of equations is
more than the number of variables), which brings non-square
Jacobian matrices. In this situation, the equation system should
be “squared” using a novel approach with minimum effort.

Take a sixth-order filter with RL = 20 dB and ωtz = [1.25,
−1.5] as an instance. The target topology is the extended
box. Finally, four real solutions are derived (coupling sign
symmetry has been removed), and the corresponding CMs are
shown in Fig. 3. The variable vector is x = [x1, x2, . . . , x16].
Whereas, the equation system has 17 equations

MT,13 = 0, MT,15 = 0, MT,24 = 0, MT,25 = 0, MT,26 = 0

MT,35 = 0, MT,46 = 0,
(
QT Q

)
3,4 = 0,

(
QT Q

)
3,5 = 0

Fig. 4. Synthesized responses of the folded form CM and the obtained CM
in the extended box form. Dashed line denotes the folded form CM. Solid
line denotes the extended box CM.

Fig. 5. Fabricated sixth-order dielectric-filled waveguide filter with two TZs.

Fig. 6. Synthesized golden circuit and the response of the dielectric filter
example.

(
QT Q

)
3,6 = 0,

(
QT Q

)
4,5 = 0,

(
QT Q

)
4,6 = 0,

(
QT Q

)
5,6 = 0(

QT Q
)

3,3 = 1,
(
QT Q

)
4,4 = 1,

(
QT Q

)
5,5 = 1,

(
QT Q

)
6,6 = 1.

(7)

Hence, an additional variable x17 is added and its interval
is imposed to be [0, 0]. This means the variable interval
is initialized as X = [−1, 1] × · · · [−1, 1]. Then, the extra
variable can be added onto one of the equations, such as the
eighth equation in (7), to form (7′)(

QT Q
)

3,4 + x13 = 0. (8)

In this way, the NINA algorithm can proceed normally, and
the roots of (7′) are exactly the solutions of (7). Similarly,
73 iterations are performed in total, and the number of intervals
has reached a peak of 986 in the computation process. In [11],
the reference files with precalculating information specific to
given topologies are necessary, which greatly saves the time
spent on time-consuming symbolic computation [4]. NINA
can be accelerated similarly in future work. The synthesized
responses of the folded form CM and the obtained extended
box CMs are compared in Fig. 4.

IV. EXPERIMENTAL EXAMPLE OF SYNTHESIS WITH
LIMITS

Besides computing all circuit solutions, NINA can directly
synthesize with customized limits to derive solutions in a
prescribed range, thus best fitting the reality, which is not
supported by Dedale-HF. Fig. 5 displays a manufactured sixth-
order dielectric-filled waveguide filter with two TZs and its
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Fig. 7. Simulated and measured responses of the dielectric filter example.

coupling diagram. To facilitate fabrication and enhance struc-
ture strength, blind holes are avoided in this design. To realize
the asynchronously tuned resonances but still retain the regular
rectangular shape without irregular edges, the lengths and
widths of all resonant cavities are deliberately adapted to each
other. In this case, however, the parasitic couplings M13 and
M46 are unavoidable, which causes the asymmetry of TZs
on both sides of the passband. Their equivalent values can
be extracted from EM simulations with lumped ports [18].
Although this topology has multisolutions, only the CM with
M13, M46 ∈ [−0.1, 0] is expected since the extracted parasitic
couplings are in this interval. Fortunately, with the NINA
algorithm, it is convenient to limit some coupling values
inside specified ranges via properly initializing the variable
intervals. Set RL = 20 dB and ωtz = [1.654, −1.284]. The
synthesized golden circuit with suitable M13 and M46, and the
corresponding responses are presented in Fig. 6, which can
guide the design and tuning process. The filter is dimensioned
in a conventional way, and the final simulation and measured
results are displayed in Fig. 7.

V. CONCLUSION

In this letter, NINA is applied in microwave filter synthesis
for the first time to reliably find all solutions or solutions
in a specified range. To handle various topologies, the way
to process well-determined and over-determined systems is
discussed. In our future work, the acceleration of NINA will
be explored and the synthesis of other filter configurations,
like frequency-dependent couplings or non-resonating nodes,
may be included.
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