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Improved Temperature- and Power-Dependent
Convolutional NN-Based PA
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Abstract— This letter presents an innovative power amplifier
(PA) behavioral model (BM) method valid for a range of
different ambient temperatures and input power levels. This work
presents a novel input image layer for a real-valued time-delay
convolutional neural network (RVTDCNN). This image layer
uses preprocessed ambient temperature and dissipated power.
The preprocessed temperature and power as well as the present
samples are placed in a central position inside the image layer.
This maximizes the number of convolution operations that they
are included in thereby magnifying the importance of these
inputs in the feature maps. The newly proposed method delivers,
in comparable conditions, a normalized mean square error
(NMSE) improvement of over 3 dB compared to a previously
published method.

Index Terms— Artificial neural network (NN), linear and
nonlinear device modeling, power amplifier (PA).

I. INTRODUCTION

FOR the sake of increasing efficiency, power amplifiers
(PAs) are usually operated in a nonlinear regime. Oper-

ating in this regime degrades signal quality metrics, such as
error vector magnitude (EVM) and adjacent channel leakage
ratio (ACLR). The prevailing technique to counteract this
degradation is digital predistortion (DPD), by precorrecting
for the PA nonlinear behavior.

DPD investigation and fine-tuning can benefit from a highly
accurate behavioral model (BM). The PA behavior depends on
several parameters, such as bias, frequency, temperature, and
power. This work focuses on these last two.

While there are several traditional linearization and BM
techniques based on memory polynomials [1], [2], lookup
tables [3], [4], and others, these usually work for only one
PA state. Neural networks (NNs) are powerful candidates to
implement BMs. Not only do they excel at approximating
complex nonlinear functions [7], [8], but they also yield the
opportunity to construct a parameterized BM [5], [6]. By using
a convolutional layer to capture in an effective manner, the
important features of the input data, the size of the network
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can be kept relatively small. This is possible due to the weight
sharing and data dimensionality reduction characteristic of the
convolutional layer as well as strong modeling capabilities of
the convolutional NN (CNN) [5].

Recently, a real-valued time-delayed CNN (RVTDCNN)-
based architecture for PA BM was presented for wideband
PA modeling [6]. This model achieved high-performance PA
modeling and linearization for signals with bandwidths higher
than 100 MHz while achieving low complexity and fast
convergence. However, it was made for a single PA state.

In [5], power–temperature inclusive (PTI)-DPD was devel-
oped. This RVTDCNN model-based DPD is capable of lin-
earizing over PA states. The model is parameterized over
a range of ambient temperatures and input power back-offs
(IPBOs) [5].

This letter improves over the state of the art by prepro-
cessing the input data fed into the RVTDCNN-based architec-
ture developed in [5] and changing the image layer format,
resulting in improved model performance while maintain-
ing the same network complexity. Model performance has
been evaluated in terms of normalized mean square error
(NMSE) and ACLR. This letter is structured as follows.
Section II describes the architecture of the network used to
implement the BM as well as the innovations made upon it.
Section III presents the results obtained for the newly proposed
model. Finally, in Section IV the conclusion of this work
is presented.

II. NN ARCHITECTURE AND IMPROVEMENTS

A. Neural Network Architecture
The implemented network architecture for the BM is pre-

sented in Fig. 1. From the left to right, we have a flow that
starts in the input layer with the input data, IQ input data
(x(n)), ambient temperature T , and signal average power P .
The input data are fed into the network. The PA model output
is the IQ sample on the right. The input layer processes the
data input points in a way to fill a matrix with size 5 × 3.
Each matrix will include the present time waveform sample,
as well as a lead and a lag sample. The matrix will be filled in
the first and second rows with I and Q samples, respectively.

The third row is filled with the PA operating conditions, i.e.,
the preprocessed temperature and power data referring to the
state of the PA to be modeled.

The last two rows are used to carry envelope-dependent
terms of the signal |x(n)| = sqrt(I (n)^2 + Q(n)^2) and its
memory parts having two nonlinearity orders, as shown in
Fig. 2. As stated in [5], these nonlinearity orders will combine
in the convolutional layer to form higher order nonlinearities.

The utilization of a convolutional layer in the network
design enhances the efficiency of the network by effectively
retaining the key features of the input data while reducing its
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Fig. 1. Network architecture, composed by, from left to right, input, image,
convolutional, fully connected, and output layers.

Fig. 2. Image formatting: (a) PTI format and (b) proposed new format.

size and complexity. By using several filters, the convolutional
layer has multiple ways of interpreting the input, keeping the
network small while still being able to capture the complex
nonlinear behavior of the PA. The filters inside the convolu-
tional layer are of size 3 × 2.

Comparing to the prior art, the proposed model significantly
improves the previously proposed [5] RVTDCNN-based archi-
tecture. Innovations, such as preprocessing and reformatting of
the image layer, result in improved performance, as measured
by the NMSE and ACLR, without increasing network com-
plexity. As can be seen in Fig. 2, the image layer size remains
the same (5 × 3). The results are improved by enriching the
input data, providing a more informed basis for the network’s
analysis.

The rest of the network is composed of a shallow NN
composed of one input layer with N neurons and one output
layer. This shallow NN will take the feature maps as input
and convert these features into the generated signal sample of
the BM.

B. Applied Innovations to the NN
The network described in [5] was improved in two ways: on

the input layer, preprocessing is applied to the data being fed
to the network and the image layer format has been rearranged.

1) Input Layer—Temperature/Output Emphasized Correla-
tion: Using the temperature parameter as input to the image
layer without any preprocessing did not deliver acceptable
network results. To emphasize the relationship between the
temperature and the output of the PA, (1) was used to obtain
YT (T ). Because the output power depends on temperature as
well as the IPBO level, (1) combines the two

YT (T , IPBO) =
diff(mean(outputSignal))
diff(temperatureRange)

∗ T . (1)

2) Input Layer—Function of Power and Temperature:
A minor change that brought considerable improvements as
well was to introduce a new parameter in the form of a
function between temperature and power. Instead of using
power without preprocessing as the third input into the matrix
(as shown in Fig. 2(a), third row and third column), it was

Fig. 3. PA behavior for different temperatures.

concluded that YT P would deliver better results, by combining
both temperature and power into the same parameter. The
expression for YT P is presented in (2), where k was swept
from 1 to 10 to find the best value, having set a final k = 2

YT P(T ) = mean(YT , P) ∧ k. (2)

3) Image Layer—Centering of the Samples: Centering the
present sample and applying both memory taps to the right
and left, with lead and a lag memory tap in the same matrix,
as presented in Fig. 2(b), Fig. 2(a) shows the original PTI
image layer format. This allows for both lead and lag memory
taps and for the temperature and the present samples to be
placed in a central position inside the image layer such that
they are included in the maximum number of convolution
operations, following the same principle as used in [5].

III. RESULTS

A. Dataset Generation

The dataset was generated using pathwave advanced design
system (ADS) [9], which involved using fast circuit envelope
level 3 (FCE3) models for each temperature, totaling 16 mod-
els ranging from −45 ◦C to 85 ◦C, and for three different
levels of IPBO from 0 to 6 dB. The aim of this dataset is
to provide sufficient data to both train and validate a single
predictive model for the PA that can effectively represent the
range of temperatures, thereby replacing the 16 ADS models.

Fig. 3 shows a binned averaged amplitude-to-amplitude
(AMAM) distortion plot, comparing the behavior of the PA
at three different temperatures (0 ◦C, 25 ◦C, and 85 ◦C). The
IQ samples and power and temperature data are preprocessed
in MATLAB and incorporated into a matrix with a size of
5 × 3, using two memory taps and two nonlinear orders.

Different random seeds are utilized to generate each sub-
set of training, validation, and testing data, enabling the
comparison of the proposed predictive model with the ADS
models. It is worth noting that the proposed BM is being
developed to replace the 16 ADS models, and thus, it will be
compared against these different models in terms of accuracy
and efficiency.

B. Training

The training signal is a 100-MHz orthogonal frequency-
division multiplexing (OFDM) signal. Measures for the
input–output pair signal are taken at different temperatures and
IPBOs and used to train the network. Two different types of
training were made, one for three temperatures [0, 35, 85] ◦C
and one for five temperatures [−45, −20, 0, 35, 85] ◦C. The
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Fig. 4. NMSE values for the network’s output trained for three temperatures.
Taken for signals of 15 MHz in dashed line and 100 MHz in full line. The
proposed network outputs are presented in orange and the PTI ones are in
green.

three-temperature training supports the 0 ◦C–85 ◦C tempera-
ture range as well as 0–6-dB IPBO, and the five-temperature
network covers the whole range from −45 ◦C to 85 ◦C.

The network is trained to minimize the error between the
reference samples, created in ADS, and the model output
samples. For this, the cost function used to train the network
is the mean squared error (MSE), expressed in (3), with the
reference labels being I and Q values, and the output of the
network being I ′ and Q′

MSE =
1

2N

N∑
n=1

[(
I ′(n) − I (n)

)2
+ (Q′(n) − Q(n))

2
]
. (3)

The optimizer chosen was adaptive moment estimation
(ADAM), with a mini-batch size of 100 samples and a
maximum number of 25 epochs, with a learning rate set to 1−4.
These parameters were chosen based on sweeps of trainings
and tests to see the best suited ones. The chosen activation
function was rectified linear unit (ReLU).

The parameters referring to the number of filters in the
convolutional layer and the number of neurons in the fully
connected layer were chosen after empirical tests showing that
the best combination would be the number of filters, F = 10,
and the number of neurons, N = 50, for our dataset.

C. Testing
The testing subset was created to test the whole range of

temperatures. A similar signal as the one created in the training
subset with 100-MHz bandwidth was first created, as well as
a 15-MHz OFDM signal. While the network was only trained
for 100 MHz, it was tested for different bandwidths as well.
Also, the testing subset was composed of 16 temperatures
ranging from −45 ◦C to 85 ◦C to test the network generaliza-
tion capabilities to the range of temperatures. In this way, the
values obtained during the testing phase are compared against
data generated by 16 different ADS models. This allows to
directly compare the proposed approach with the ADS model
performance.

After training, the testing data for the whole temperature
range are fed to the model. To measure the network perfor-
mance for the temperature range, the IPBO is fixed at 0 dB
and the temperatures are swept from 0 ◦C to 85 ◦C for the
network trained with three temperatures and from −45 ◦C
to 85 ◦C for the network trained with five temperatures. The
testing results from the proposed model are plotted against
the ones obtained using the PTI format of the image layer and
without preprocessing. Note that the network complexity is
the same in both PTI and proposed cases, changing only the
preprocessing and image format. In Fig. 4, the NMSE plot is
traced for 100 and 15 MHz. The proposed network results are

Fig. 5. ACLR values for the network’s output trained for three temperatures.
Taken for signals of 15 MHz in dashed line and 100 MHz in full line. The
proposed network outputs are presented in orange and the PTI ones are in
green.

Fig. 6. (a) AMAM plot and (b) AMPM plot. Both AMAM and AMPM are
taken for a signal of 100 MHz with the network trained for three temperatures.

Fig. 7. NMSE values for the network output trained for five temperatures.
Taken for signals of 15 MHz in dashed line and 100 MHz in full line. The
proposed network outputs are presented in orange and the PTI ones are in
green.

Fig. 8. NMSE values for the network output trained for three temperatures
across several IPBO levels and from 0 ◦C to 85 ◦C.

shown in orange, while the PTI ones are shown in green. While
the network was only trained for 100 MHz, it can perform as
well for the lower BWs, presenting an average NMSE for the
proposed network of −40.26 dB for 100-MHz signals and
−41.01 dB for 15-MHz signals.

Fig. 5 shows the ACLR plots, again with the orange
one referring to the newly proposed network, following the
reference in dashed blue, while the ACLR represented in green
corresponds to the PTI format. The newly proposed network
shows an improvement over the PTI format.

The AMAM and AMPM plots are presented in Fig. 6, where
again, it is concluded that the proposed network follows much
closer the reference values when compared to the PTI network
outputs.

The results for the five-temperature trained network are
shown in Fig. 7, where different results are shown this time.
The PTI approach (green curve) achieves better performance
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in the trained temperatures, and however, it does not accurately
cover the entire range of temperatures. The NMSE from the
proposed approach (orange curve) achieves consistent values
around the whole range of temperatures from −45 ◦C to 85 ◦C.
In this case, the mean NMSE for the PTI network format is
−36.48 dB, while the mean NMSE for the proposed model is
−39.57 dB.

Finally, in Fig. 8, the network trained with three tempera-
tures is tested across all the temperatures for different IPBOs.
The network presents a stable PA model across the different
power levels of 0-, 2-, and 6-dB IPBO. The average NMSE
for the different IPBOs is −40.26, −41.03, and −40.06 dB
for an IPBO of 0, 2, and 6 dB, respectively.

IV. CONCLUSION

In this work, an improved temperature- and
power-dependent PA CNN-based model is proposed.
This model includes a novel image layer format that
uses preprocessed PA temperature and power parameters.
The input data are arranged such that the inclusion of
the most important parameters in the feature maps is
promoted.

This method can work in a wide range of different PA
states, tested from −45 ◦C to 85 ◦C and 0 to 6 dB. By using
preprocessing of the parameters, it better compensates the
effects of temperature and power variation on the PA behavior
when compared to the previous method. It outperforms the
previous method on equal conditions by over 3 dB when
trained for five temperatures and by a larger margin when
both are only trained for three temperatures.
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