

Monolithic Compact Low-Frequency Bandpass Filter Based on Intertwined Helical Resonators

J.L. Medrán del Río, A. Fernandez-Prieto, J. Martel. D. Psychogiou

3D fully metallic structures alternatives

- 3D printing technologies or additive manufacturing processes.
 - Stereolithography (SLA).
 - Fused deposition modeling (FDM).
 - Selective laser siltering (SLS).

Compact low-frequency bandpass filter

✓ Difficulty in the development of low-frequency (< 3GHz) bandpass filters making use of 3D cavity filters → Capacitively-loaded Coaxial cavity resonators → Helical resonators → Intertwined helical resonators</p>

- Monolithically-integrated.
 - High-precision SLA manufactured complex topology.
- ✓ Intertwined helical resonators.
 - Novel approach to reduce the size of the bandpass filter one step further than conventional coupled helical resonators.

- ✓ The proposed second order BPF is composed of two capacitively-loaded intertwined helical resonators that are placed inside a hollow cylindrical cavity.
- ✓ Design based on coupled resonators theory (Q_e and K).
- ✓ Main characteristics:
 - ❖ $f_c = 1,08 \text{ GHz}$
 - 3 dB FBW = 15,5 %
 - ❖ IL = 0,08 dB
 - ❖ 1st Spurious ratio = 2,8
 - Measured $Q_{eff} = 1805$
 - ⇒ Dimensions $(\lambda_x \times \lambda_y \times \lambda_z) = 0.12 \times 0.12 \times 0.18$

QUANTITATIVE IMPACT

A

<u>G</u>0/

Ш

ONC

PROPOSED

The future work for this contribution includes:

- Investigating the impact of expanding the frequency range of the prototype.
- Exploring the potential for employing the suggested topology in higher order filters.
- Developing a balanced filter based on the proposed topology.

NEW INSIGHTS

