

QUO

**TATUS** 

**EW INSIGHTS** 

## A Monolithically 3-D Printed Waveguide Filter Based on Elliptic Cylindrical Resonators With Enhanced Polarization Rotation Flexibility





Yuhong Ye<sup>1,2</sup>, Jin Li<sup>1,2</sup>, Sicheng Chen<sup>1,2</sup>, Zhihong Xu<sup>1,2</sup>, Tao Yuan<sup>1,2</sup>



- Frequency selection
- Polarization rotation

## Drawbacks of conventional twisted BPFs:

- Geometrical distortion
- Difficult to analyze
- · Cascaded with filters and twists (bulky & lossy)



- Similar field distribution : TE<sub>10</sub>, TE<sub>11</sub> and TE<sub>c11</sub>
- Rotational symmetry of Elliptical cylindrical resonators (ECRs) and cylindrical coupling cavities
- Waveguide continuous closed contour
- Avoid edges and corners
- Avoid internal supporting, monolithic integration



- Design flexibility of any polarization rotation angle between 0°–90°
- Compatible with 3-D Printing without any distortion
- Monolithic integration

RIPTION

0

S

Ш

- Coupling Structures
- Inter-resonator coupling: cylindrical cavity
- · External coupling: cylindrical cavity
- RF design specification
- Center frequency f<sub>0</sub> = 10 GHz, FBW = 3%, RL > 20dB
- $M_{S1} = M_{4L} = 0.0318$ ,  $M_{12} = M_{34} = 0.0280$ ,  $M_{23} = 0.0214$







## PROPOSED NCEPT GOAL

- Excellent passband performance (RL: > 20 dB; IL: ~0.4 dB; Δf: ~0.2%)
- Enhanced design of flexibility and structural compatibility with 3-D printing process
- Elimination of geometrical distortion

## **Future work**:

 Improving stopband performance and enhancing freedom of polarization orientations

<sup>1</sup>College of Electronics and Information Engineering, Shenzhen University, China <sup>2</sup>Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication, China **Contact**: Yuhong Ye yeyuhong2021@email.szu.edu.cn



