QUO **TATUS** **EW INSIGHTS** ## A Monolithically 3-D Printed Waveguide Filter Based on Elliptic Cylindrical Resonators With Enhanced Polarization Rotation Flexibility Yuhong Ye^{1,2}, Jin Li^{1,2}, Sicheng Chen^{1,2}, Zhihong Xu^{1,2}, Tao Yuan^{1,2} - Frequency selection - Polarization rotation ## Drawbacks of conventional twisted BPFs: - Geometrical distortion - Difficult to analyze - · Cascaded with filters and twists (bulky & lossy) - Similar field distribution : TE₁₀, TE₁₁ and TE_{c11} - Rotational symmetry of Elliptical cylindrical resonators (ECRs) and cylindrical coupling cavities - Waveguide continuous closed contour - Avoid edges and corners - Avoid internal supporting, monolithic integration - Design flexibility of any polarization rotation angle between 0°–90° - Compatible with 3-D Printing without any distortion - Monolithic integration RIPTION 0 S Ш - Coupling Structures - Inter-resonator coupling: cylindrical cavity - · External coupling: cylindrical cavity - RF design specification - Center frequency f₀ = 10 GHz, FBW = 3%, RL > 20dB - $M_{S1} = M_{4L} = 0.0318$, $M_{12} = M_{34} = 0.0280$, $M_{23} = 0.0214$ ## PROPOSED NCEPT GOAL - Excellent passband performance (RL: > 20 dB; IL: ~0.4 dB; Δf: ~0.2%) - Enhanced design of flexibility and structural compatibility with 3-D printing process - Elimination of geometrical distortion ## **Future work**: Improving stopband performance and enhancing freedom of polarization orientations ¹College of Electronics and Information Engineering, Shenzhen University, China ²Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication, China **Contact**: Yuhong Ye yeyuhong2021@email.szu.edu.cn