

An Improved Extraction Method for the Trapping Time Constants in GaN HEMTs

Inês C. Lopes, Luís C. Nunes, Pedro M. Cabral, José C. Pedro

GaN HEMT [1]

TATUS

EW INSIGHT

Trapping effects cause performance degradation!

- ✓ To understand it, we need accurate models.
- ✓ The **trapping dynamics** is analyzed through the **time constants** extracted from the $i_{DS}(t)$ profile.
- However, *I_{DS}* is nonlinear with respect to the trapping state.

Incorrect results can be obtained.

New method to obtain the trapping time constants:

- ✓ De-embed the nonlinearity.
- ✓ Obtain the **equivalent control voltage** (V_{CTRL}) , which represents the **trapping state**.
- Obtain the time constant from the new information.

[1] https://www.wolfspeed.com/cg2h80015d/

Simulation

Transistor model: **current source**, that depends on v_{GS} and v_{DS} , and v_{CTRL} through the **Jardel's Model**.

Simplified circuit schematic used for modelling the transistor trapping effects.

- \checkmark Apply a voltage step and compute $i_{\it DS}(t)$ and $v_{\it CTRL}(t).$
- Calculate the derivative over logarithmic time for each variable and obtain the time constants.

Experimental Setup

- ✓ Using the double-pulse technique, obtain the I/V curves for different V_{DQ} and perform I_{DS} -DLTS measurements.
- ✓ Obtain v_{CTRL} from the i_{DS} measurements and fit an exponential function to the measurements.
- Calculate the derivative over logarithmic time for each variable and obtain the time constants.

Emission from 90 V to 50 V (V_{GS} =-1 V)

✓ Comparison between emission profiles using the time constants obtained from the measured $i_{DS}(t)$ and $v_{CTRL}(t)$ curves.

The model with the time constant obtained through V_{CTRL} presents a better fit to the measurements.

ROPOSED CONCEPT GOALS

QUANTITAT

IMPA

This improved extraction method features:

- Extraction of the trapping time constants in a more accurate way.
- ✓ On what the trapping dynamics is concerned, transistor models that are more precise.

CRIPTION

S

Ш

