Low-Complexity Feedback Data Compression for **Closed-Loop Digital Predistortion**

Arne Fischer-Bühner, Lauri Anttila, Vishnu Unnikrishnan, Manil Dev Gomony, and Mikko Valkama

BB to RF

 \otimes

receiver

RF to BB

Digital predistortion (DPD) feedback architecture

System output is observed using dedicated feedback receiver to adapt the DPD model

Challenges

900

STATUS

- high oversampling ratio + high bit-resolution needed to capture the distortions
- long feedback sequence needs to be acquired to record all possible PA excitations

Existing solutions

- ✓ histogram-based sample selection: extract a representative set of feedback samples
 - x statistical properties of distortion need to be known and signals need to be analyzed first
 - high complexity, low flexibility

Low complexity method for feedback compression using "sample combining"

- √ condense feedback sample set
- extension of feedback undersampling
- irrespective of signal properties / PA excitation
 - high flexibility
- suitable for throughput-oriented, real-time, low complex implementation

DAC $f_{ m DPD}$ coefficient training coefficient ancellation regressor matrix update integrate & feedback ADC coeff. estimate undersampling

SCRIPTION

ш

The proposed method uses three components:

✓ undersampling ADC + ✓ integrate & dump + ✓ cancellation

Any linear operation on the coefficient estimation is permitted if

- 1) similarly applied to feedback and regressors Φ
- 2) not systematically removing information (e.g. low-pass filter)

Combining rows/samples by integrate + dump yields condensed set of equations, information loss is avoided since

- most rows are highly-correlated
- undersampling spreads information in frequency domain and avoids low-pass removal of information

IMPACT Ш

QUANTITATIV

SED ALS

PO

0 EPT

 α

OAL

Ü

ONC

Evaluation with 100 MHz OFDM on 3.5 GHz GaN PA

- optimized learning \$\overline{8}\$ rate
- ➤ 20 closed-loop training iterations
- assume low-bit quantization (5 bit)
- > GMP DPD model
- high linearity with 5x less data vs normal feedback
- same performance as reference

sample combining

Frequency (MHz)

Proposed a simple & effective compression scheme for feedback sample reduction with

- low processing overhead
- competitive compression performance
- applicable together with low bit-resolution and undersampling ADC

Future work:

- demonstration in real-time system
- extension to DPD in multi-antenna systems

NEW INSIGHTS

