

STATUS

Characterization of a D-Band Electric-Inductive-Capacitive Metamaterial-Based Transmission Line Phase Shifter

G. M. Zampa, A. Sonara, D. Mencarelli, L. Pierantoni, H. J. Christopher, Z. Cao, R. Al Hadi, M. F. Chang, M. Kaynak

- Need for tunable phase shifters at mm-frequencies (D-band)
- ✓ Active phase shifters presents non-linear behavior and high losses

DESCRIPTION

IMPAC **QUANTITATIVE**

- √ 60°-100° quasi-linear phase shift in band
- √ 45-49% size reduction

measurements.

- 2.2 dB average insertion loss in the full band
- √ 7% maximum relative error of the model

✓ Realization of a passive phase shifter @ 140 ✓ Good agreement between simulations and

- ✓ Use of SiGe 0.13 µm technology stack for high frequency applications.
- ✓ Possibility to achieve tunable phase shifting through the addition of active elements.

PROPOSED CONCEPT

GOALS

Metamaterial-based phase shifters

