

A W-Band Phase-Shifter-Embedded PA in 40-nm CMOS for 6G Applications Chun Wang, Pin-Chun Chiu, and Chun-Hsing Li

6G Wireless Communication System

6G White Paper, Samsung 2020

- ✓ THz band operation
- ✓ High data rates and wide bandwidth
- ✓ Extends the capabilities of 5G application
- ✓ High path loss at THz frequencies

LO-Phase-Shifting Phased-Array Transceiver

LO-phase-shifting phased-array transceiver with the proposed $\Delta\phi\text{-embedded PA}$

- ✓ Without additional phase shifter design
- > Low cost since saving chip area
- ➤ No additional insertion loss from phase shifter
- ➤ Easy implementation for LO-phase-shifting generation in phased-array transceiver

W-Band Δφ-Embedded PA

W-Band Phase-Shifter-Embedded PA

Multifunctional Δφ-Embedded IMN

The W-Band phase-shifter-embedded PA is mainly composed of two parts:

✓ Multifunctional Δφ-embedded IMN

- > Single-ended to differential conversion
- Impedance matching
- > Continuously phase-controlled phase shifts
- ➤ High gain flatness
- Compact layout and small chip area since using transformer
- > Provide dc feeding and ac-couple operation
- ✓ 1-way 4-stages differential CS amp. with C_{neu}
- High power gain
- High stability

Experimental Results

Conclusion

Phase-Shifter-Embedded PA featuring:

- Full 360° continuously phase-shifting range with frequency multiplier design for sub-THz/THz system
- Low cost since using 40-nm digital CMOS technology without ultra-thick top metal available
- A phase-controlled sub-THz/THz LO signal with high output power and fine phase resolution for 6G high-speed wireless communication system

