Chest-worn Transmitarray Lens for Monitoring Heart Rate Variability With a Remote Self-Injection-Locked Doppler Radar

STATUS

NEW INSIGHT

R. E. Arif, W.-C. Su, T.-S. Horng, C.-T. M. Wu

- Remote Doppler radar: insufficient directivity
- Wearable active tag: high accuracy but with a battery life issue
- · Wearable passive tag: no battery life issue but with a nonlinear design

The use of transmitarray lens can help

- ✓ Concentrate radar illumination
- ✓ Improve chest electric field penetration
- Reduce standing-wave ratio on chest surface

The system comprises two parts:

✓ Chest-worn transmitarray lens

- A 15 x 15 array of metamaterial cells with different sizes
- Conversion of a spherical phase front to a planar phase front
- Made of three-layer Duroid RO4003 substrate

Self-injection-locked (SIL) Doppler radar

· Composed of a bow-tie antenna, a SILO, a frequency demodulator, a DAC, and a computer

QUANT

<

O

U

PT

Ш

0

S

0

Ĭ

O

 α

more than 40%

✓ A chest-worn transmitarray lens improves HRV monitoring with a SIL Doppler radar.

- ✓ The transmitarray lens focuses the radar beam for accurate heartbeat detection in a specific area of the heart.
- Experiments confirmed the transmitarray lens's favorable performance.
- ✓ Future work will implement the transmitarray lens using flexible materials and/or 3D printing techniques.

RIPTION

0

S

Ш

