Robust Fulcrum-Type Wafer-Level Packaged MEMS Switches Utilizing AI-Ru-AICu
UNIVERSITY OF Contacts Fabricated in a Commercial MEMS Foundry
SAN DIEGO2023
T. Singh and R. R. Mansour

University of Waterloo, ON, Canada

STATUS QUO

- From past two decades, advancements in RF MEMS switches have provide unique solutions to tunable devices.
- RF-MEMS usually suffer from reliability concerns including beam warping, contact degradation, high switching time and stiction.
- Hermetically sealed wafer level packaged devices are designed and fabricated to mitigate such concerns in a commercial MEMS foundry.
- Unique materials and thick silicon core for robust switching operation is demonstrated with exceptional RF performance.

NEW INSIGHTS

Redundancy Matrix using transfer switches.

- Fulcrum-type MEMS switches in hermetically wafer-level packaging

- Improved isolation and low insertion loss
Stresses are minimized utilizing a thick silicon core structure.
- No electrical vias or passthroughs required.
- High switching speed and improved reliability due to the use of AI-Ru-AICu contacts to minimize contact degradation
20 mask process with three wafers eutectic bonding.

DESCRIPTION

(a)

Single and Triple Contact Switches

QUANTITATIVE IMPACT

DC-14 GHz \quad Insertion Loss $<0.2 \mathrm{~dB}$ Packaged Switch - Isolation > 20 dB

PROPOSED CONCEPT GOALS

- A highly reliable robust wafer level packaged RF MEMS switch.
- See-saw type mechanism that provides two unique and independent RF switches in a single hermetically sealed packaged (< 2.5 mm)
- Non-metallic thick silicon core to improve mechanical robustness.
- Au-Ru-AlCu metal contacts minimizes any micro-welding and contact degradation issues while silicon core provides warm free beams.
- Eutectic packaging approach to minimize any post release packaging issues and minimize any vibration related damages.

