

## Down-Conversion Mixer Using $\lambda/4$ -TL-C-based Coupler and BSFB Technique for 28 GHz 5G NR



QUO

STATUS

**NEW INSIGHTS** 

Y. S. Lin, K. S. Lan

## Down-Conversion Mixer for 28 GHz 5G NR



- Traditional down-conversion mixer is hard to achieve low V<sub>DD</sub> and P<sub>DC</sub>, wideband, and decent CG and NF at the same time
- λ/4-TL-and-C<sub>c</sub>-based coupler and body-selfforward-bias (BSFB) technique are proposed



**ESCRIPTION** 



Low V<sub>DD</sub> and P<sub>DC</sub>, high CG, and low NF operation

- λ/4-TL-C<sub>c</sub>-based coupler
- > Low loss at operation band
- Harmonics suppression
- Low V<sub>DD</sub> and optimized NF/gain/linearity design



The down-conversion mixer is composed of three parts:

- ✓ Double-Balanced Gilbert-Cell-based Mixer Core
- $\triangleright$  RF gm-stage using the BSFB technique and a  $\lambda/4$ -TL-C-based coupler
- > The merits are straightforward design and layout, and harmonics suppression
- > CCPT-RL-based core IF load is used
- √ Wilkinson-Power-Divider-based Balun
- ➤ Used as the required RF- and LO-balun
- Decent AI and PD performance are achieved
- ✓ PMOS Output Buffer
- > PMOS CS Amplifier with LR load is used

## **QUANTITATIVE IMPACT**



## S A PROPOSED ONCE

MM-wave down-conversion mixer featuring:

- ✓ Low  $V_{DD}$  (0.5-V) and  $P_D$  (4.5-mW), high CG (12.6-dB), wideband (12.4-32-GHz), and low NF (10.6-dB)
- ✓ \(\lambda/4-TL-C\)-based coupler is used for near perfect coupling & harmonics suppression
- ✓ BSFB technique is used for V<sub>th</sub> and V<sub>DD</sub>. reduction & substrate leakage suppression
- ✓ CG and NF enhancement at the same P<sub>DC</sub>. is achieved due to lower V<sub>DD</sub> & higher g<sub>m</sub>



