



#### **TH1B-4**

# Non-Invasive Internal Body Thermometry with On-Chip GaAs Dicke Radiometer

Jooeun Lee, Gabriel Santamaria Botello, Robert Streeter, Zoya Popović University of Colorado, Boulder, USA

University of Colorado Boulder







#### Outline



- Background & Motivation
- Radiometer Overview
- Near-Field Antenna Design
- MMIC Switch and LNA Design
- Measurements and Temperature Estimation





# **Background & Motivation**



Various medical applications to benefit from internal tissue temperature

Cardiac surgery[1]

Hyperthermia treatment[2]

Sleep disorder[3]







... and many others





#### **Current Methods**



- Invasive methods
  - Needle probes and radio pills
- MRI
  - High-cost and non-wearable
- Heat-flux device
  - Sub-cm measurement depth



Microwave radiometer is a non-invasive and compact device that measures thermal noise power emitted from a stack of tissues.





# **Black Body Radiation**



- Black body radiation: all materials at non-zero temperature emit electromagnetic energy across the entire spectrum
- The power spectral density (W/Hz) is:

$$p = \frac{hf}{e^{hf/kT} - 1}$$

 For a human, the black-body curve (red) peaks in the infrared (penetration into tissues: ~1mm)









## **Passive Microwave Thermometry**



 At lower microwave frequencies, sensing depth is a few cm

$$p = \frac{hf}{e^{hf/kT} - 1} \approx kT$$

 Near-field antenna attached on skin to receive thermal noise



- "Quiet" radio astronomy band: 1.4-1.427GHz (2% BW)
- Compromise between sensing depth, low RF interference and size





#### Radiometer Overview



#### Dicke Radiometer







- Time on-target limited
- Switch is lossy

$$\Delta T = \frac{2 T_{Sys}}{\sqrt{\Delta f \tau}}$$

#### **Correlation Radiometer**



- Continuous measurement of both input
- Lower sensitivity to impedance mismatch
- Sensitive to gain fluctuation of detector

$$\Delta T = \frac{\sqrt{2} T_{Sys}}{\sqrt{\Delta f \tau}}$$





### Temperature Measurement





$$T_{total} = W_{skin}T_{skin} + W_{muscle}T_{muscle}$$

W: Weight of layer

T: Temperature of layer





### Temperature Measurement



 $1.4 \sim 1.427 \text{ GHz} : kTB = -99.5 dBm$  @  $27^{\circ}\text{C B} = 27 MHz$ 



- Dicke radiometer connected to a phantom tissue stack of skin and muscle
- Switch and LNA implemented on a GaAs MMIC
- Output digitized and processed





# Near-field Antenna Design



#### Cross-section

#### Top view











- Designed to match the tissue layers
- Rectangular patch topology





# SPDT Switch Design







- Shunt-series topology
- Inductor(L<sub>res</sub>) to resonate the "OFF" capacitors of the transistors
- Insertion loss: 0.29 dB / Isolation: 30.8 dB @1.4 GHz



Dashed: simulation



## LNA Design



#### Schematic



#### Measurement



- 3-stage common source amplifier
- Distributed filters for stability improvement
- Performance at 1.4 GHz: Gain: 45.2 dB/Noise figure: 0.52 dB





# **MMIC** Implementation









- Performance at 1.4 GHz
  - Gain: 45.1 dB / 41.9 dB w/ filters
  - Noise figure: 0.88 dB





# Measurement Test Setup







 Two muscle phantoms alternated on skin phantom

| Phantom | Thickness<br>(mm) | $\mathcal{E}_{r}$ | $\delta$ (S/m) |
|---------|-------------------|-------------------|----------------|
| Skin    | 2                 | 28                | 0.82           |
| Muscle  | 15                | 77.7              | 1.26           |





# Temperature Measurement





Two muscle phantoms alternated every 20 seconds





# Temperature Measurement



Volume Joule loss of tissue phantom



Weights from Joule loss

$$W_i = \frac{\int_{v_i} \rho_J}{\int_{v_{tot}} \rho_J}$$

 $W_{muscle}: 0.593$ 

 $W_{skin}$ : 0.261

 $W_{probe}$ : 0.03

$$T_{total} = W_{skin}T_{skin} + W_{muscle}T_{muscle}$$





## **Temperature Estimation**





$$T_{total} = W_{skin}T_{skin} + W_{muscle}T_{muscle}$$

- Skin temperature is calibrated to estimate muscle temperature
- Average error of 0.77 °C





## **Temperature Estimation**





$$T_{total} = W_{skin}T_{skin} + W_{muscle}T_{muscle}$$

- Skin temperature is calibrated to estimate muscle temperature
- Average error of 0.77 °C





#### Conclusion



- Non-invasive internal body temperature measurement
  - 45 dB stable gain, 0.88 dB noise figure for Dicke MMIC
  - About 80 mW power consumption
  - Temperature measurement and estimation using 2-layer phantom stack
  - Average estimation error of 0.77 °C
- Future work
  - Further implementation to MMIC
  - Temperature measurement of multi-stack tissue layers









#### References



- [1] Boulder Community Health. (2021, April 21). Cardiovascular surgery. Boulder Community Health. Retrieved September 22, 2022, from https://www.bch.org/ourservices/cardiology/tests-treatments/cardiovascular-surgery/
- [2] UCSF Health. (2020, October 7). Hyperthermia. ucsfhealth.org. Retrieved September 22, 2022, from https://www.ucsfhealth.org/treatments/hyperthermia
- [3] Lack, L. C., Gradisar, M., Van Someren, E. J., Wright, H. R., & Lushington, K. (2008). The relationship between insomnia and body temperatures. Sleep medicine reviews, 12(4), 307-317.
- [4] G. Galiana, R. T. Branca, E. R. Jenista, and W. S. Warren, "Accurate temperature imaging based on intermolecular coherence in magnetic resonance," Science, vol. 322, no. 5900. 2008. https://doi.org/10.1126/science.1163242.
- [5] Riddhi, & \*, N. (2015, August 25). *Pill measures body temperature*. Health Tech Insider. Retrieved January 17, 2023, from https://healthtechinsider.com/2015/08/25/ingestible-heat-monitor-bodycap/







# Thank you © Questions?

