

TH1C-3

Low-IF Doppler Radar Using Delay- and Self-Injection-Locking Technology with Clutter Cancellation for Biomedical Monitoring

Wei-Chih Su, Chia-Hao Chang, Yi-Yang Wu, Tzyy-Sheng Horng, and Shiang-Hwua Yu Department of Electrical Engineering, National Sun Yat-sen University, Taiwan

Outline

Motivation

- Proposed Radar Architecture
- Operating Principle Key Parameter
- Experimental Setup and Results
- Conclusion

Direct-conversion Doppler Radar

Low-IF architecture

Advantages

- Simplicity structure
- Micro-displacement detection
- Human motions and vital signs surveillance

Challenges

- Vulnerable sensitivity
 - DC offset/flicker noise
- Linearity within large displacement detection

Low-IF Doppler Radar

- Requirement
 - High image rejection
 - High sampling rate
- Sophisticated signal processing
 - I/Q mismatch
 - DC offset compensation
 - Arctangent demodulation
 - Phase unwrapping

Proposed Radar Architecture

Digital self-injection-locked (DSIL) based low-IF Doppler radar

18-bit Displacement Amp., BPF I/Q Mixer Amp. BPF Comp. W_c **Power** Splitter Signal Tx Ant. **BPF** \sim w SSILO Splitter **1/Q Mixer** IF DSIL Block IF Transceiver RF Front-End

- RF front-end
 - High IRR
- IF transceiver
 - Clutter canceller
- IF SDIL unit
 - High linearity
 benefits from a
 DLL-controlled
 digital TDL
 - High Doppler sensitivity

Key Parameter of Doppler Sensitivity

Carrier freq.

Analog

Locking range

Delay line in FD

Carrier freq.

Locking range

Digital

Delay line in FD

IF freq.

System clk

$$G_{SNR}(s) = \left| \frac{\omega_{LR} \cos \alpha_{inj}}{s} \right|^2$$

Analog SIL radar

18-bit Displacement

IF DSIL Block

$$\Delta D_{\min} = \frac{f_{IF} T_{CLK} c}{2 f_{RF}}$$

Digital SIL radar

[1] F.-K. Wang et al., "A novel vital-sign sensor based on a self-injection-locked oscillator," IEEE Trans. Microw. Theory Techn., vol. 52, no. 12, pp. 4112-4120, Dec. 2010.

Implementation of the Radar

Tx freq.	5.8 GHz
IF freq.	40 kHz
Tx power	0 dBm
Total IRR	~76 dB
Total harmonic distortion	< 1.2 %
Displacement resolution	20.7 μm

Performance Evaluation

Experimental Setup

1) Clutter cancellation & vibration sensitivity

2) Vibration sensitivity under1-D constant velocity motion

Evaluation Result (1-I)

clutter cancellation process

IF signal waveform during the Baseband displacement waveform before/after cancellation

Evaluation Result (1-II)

Vibration sensitivity test under various displacement

- Theoretical $\Delta D_{\min} = 20.7 \ \mu \text{m}$
- Measured $\Delta D_{\min} = 40 \ \mu \text{m}$
- Quantization noise/jitter

Evaluation Result (2)

Vibration sensitivity test with various displacement under 1-D constant velocity motion

- Detectable
 displacement can be
 smaller than 0.1 mm
 while moving
 several wavelengths
 - High linearity
 - High sensitivity

Vital Signs Monitoring for A Moving Subject

Experimental Result

Conclusion

- This work introduces the clutter canceller into the low-IF digital SIL radar to deal with the strong environment clutter from using a wide beamwidth antenna
 - The clutter cancellation ratio is up to 97.6%
 - Recover the distortion due to the clutter
 - High linearity and high sensitivity
- The proposed low-IF digital SIL radar successfully monitors the vital signs of a human subject when he moves at a constant velocity for several wavelengths

