

319-UW659

Adaptive NFC WPT System Implementing Neural Network-Based Impedance Matching with Bypass Functionality

J. Romero Lopera^{1,2}, R. Fischbacher^{1,2}, R. Pestros², D. Pommerenke^{1,2}, B. Auinger², and J. Grosinger¹

¹Graz University of Technology, Austria

²Silicon Austria Labs, TU-Graz SAL GEMC Lab, Austria

Outline

- Introduction
- Structure
- Components
 - Transmitter-Receiver Coils
 - Adaptive Matching Network
 - Artificial Neural Network
- System performance
- Conclusion

Introduction

- WPT system based on MCR at ISM band 13.56 MHz
 - Explore NFC charging capabilities
 - Real-time optimization under varying TX-RX positions
 - Performance of ISO/ICE 14443 class 1 coils for WPT
 - Analyze advantages and disadvantages of AIMNs
 - Provide an AI enhanced solution of an RF adaptive WPT system

WPT: Wireless power transfer system MCR: Magnetically coupled resonators

TX: Transmitter RX: Receiver

AIMN: Adaptive impedance matching network

Al: Artificial intelligence RF: Radio-Frequency

NFC: Near-field communications ISM: Industrial, scientific, medical

System Architecture

Structure of the real-time adaptive WPT system

d: Inter-coil distance θ : Azimuthal tilt Δx : Horizontal misalignment Δy : Vertical misalignment

TX-RX Coils

MCR TX-RX: Series-series (SS) resonant configuration

Measurement Setup

- WPT channel characterized under different TX-RX positions
- Semi-automatized process
- Scattering-parameters measured with a VNA
- Large dataset assembled
- DOI:10.21227/vtp8-x586

Channel Dataset - Z_{in}

- Different coupling regimes determined by Z_{in}
 - Overcoupling
 - Undercoupling
 - Critical coupling
- Red trace indicates critical coupling region

Adaptive Matching Network

• AMN designed to perform matching of Z_{in} to 50 Ω at 13.56 MHz

Artificial Neural Network

Neural network with backpropagation using Matlab's toolbox

- General dataset created for training-validation
 - $\text{Re}(Z_{in}) = [5-900] \Omega$; Im(Z_{in}) = [-100-100] Ω; 8200 data points
 - AWR controlled through Matlab: AWR optimizer determines C₁, C₂, C₃
 - 70% Training, 30% Validation
- Measured S-parameters $\rightarrow Z_{in}$ used to test the network
- Training and validation MSE ~ 5%. Test MSE ~ 10%

System performance

System performance - S₁₁

System performance - S₂₁

Conclusions

Adaptive NFC WPT System Implementing Neural Network-Based Impedance Matching with Bypass Functionality

Outlook

Hardware implementation of the prototype

Thanks for your attention!

IMS Virtual adaptive WPT environment

- Matlab controls AWR to implement a virtual environment of the adaptive WPT system:
 - Coil measurements $→Z_{in}$ loaded in Matlab and passed to AWR
 - EM simulated AMN implemented in AWR
 - Neural network outputs performed in matlab
 - Impedance detection and AMN control performed in Matlab
 - $-S_{11}$ and S_{21} of the adaptive WPT system determined in AWR
 - Switching between bypass and AMN performed by Matlab

Artificial Neural Network

Neural Network with backpropagation using Matlab's Toolbox

- General Dataset created for training-validation
 - $\text{Re}(Z_{in}) = [5-900] \Omega$; Im(Z_{in}) = [-100-100] Ω; 8200 data points
 - AWR controlled through Matlab: AWR optimizer determines C₁, C₂, C₃
 - 70% Training, 30% Validation
- Measured S-parameters $\rightarrow Z_{in}$ used to test the network
- Training and validation MSE ~ 5%. Test MSE ~ 10%

