

TH1E-4

A 6.4-GHz Spurious-Free Acoustic Filter based on Lithium Niobate S1-Mode Resonator

Xueyan Liu¹, Zhongbin Dai¹, Zijia Su¹, and Chengjie Zuo^{1,2}

¹University of Science & Technology of China, Hefei, China ²YUNTA Technologies and ANUKI Technologies, Hefei, China

Outline of this Presentation

- **☐** Motivation & Challenges
- ☐ Spurious-free Resonator Design
 - **♦** Characteristic of S1 Mode
 - **♦** Impact of lateral parameters
 - **♦** Fabrication and Measurement
- **☐** Spurious-free Filter Design
- ☐ Conclusion and Outlook

Motivation & Chanllenges

6G Channel Allocations

- High frequency
- Low Loss & Sharp roll-off

S1 Lamb Wave Mode Resonator

Frequency (GHz)

- High acoustic velocity, but parasitic modes
- Breakthrough of Q_p over 100,000

[1] [A. Gao, et al., IUS, 2017]

[2] [Y. Yang, et al., TMTT, 2020]

[2]

Admittance (dB)

[3] [Z. Dai, et al., Electron Device Lett., 2022]

Characteristics of S1 Mode

- Displacement of S1 Mode
 - Thickness defined

- Spurious Modes:
 - S1-3 & higher-order modes
 - Inhomogeneous electric filed

Impact of Pitch

Pitch increases, Δf decreases

Impact of Duty Factor

- Duty Factor (DF)
 - $DF = \frac{W_e}{p}$
 - DF increases, spurious modes drift away

3. ICP for LiNbO₃ etching

2. Definition of etch mask

4. Device release using BOE

(a) SEM graph of the fabricated resonator with its geometry labeled

(b) Results of the spurious-free resonator: $Q_s = 313$; $Q_p = 989$

$$Q_s = 279$$

$$Q_p = 5504$$

$$Q_s = 313$$

 $Q_p = 989$

Spurious-free Filter Design

Series Resonator

Parallel Resonator

- Ladder-topology filter
 - Series resonators are realized by regional thinning

- IL = 2.6 dB, BW is around 80 MHz
- Transition band of 55 MHz, S_{21} drops from 2.6 dB to 40 dB

Conclusion

- ➤ This work designed and fabricated a 6.4-GHz spurious-free resonator & filter based on X-cut LN film.
- By designing the electrode pitch and DF of IDTs, in-band spurious modes are suppressed.
- ➤ The implemented resonator has a high Q close to 1,000, and the filter based on it has a low insertion loss of 2.6 dB, a sharp roll-off of 55 MHz.
- ➤ In further optimization, adding passive devices to design a hybrid filter could enable a larger BW.

Thanks for your attention!

Further discussion is welcome at:

xueyanliu@mail.ustc.edu.cn

Further optimization

Lumped LC component

