

Th1E-6

Twist Piezoelectric Coupling Properties to Suppress Spurious Modes for Lithium Niobate Thin-film Acoustic Devices

Fangsheng Qian, Tsz Fung Ho, Yansong Yang

Hong Kong University of Science and Technology

- Introduction and Motivations
- Solidly Mounted Lithium Niobate Thin Film
- Piezoelectric Coupling Properties Analysis
- Implementation and Measurements
- Conclusion

Wireless communication system

Comparison of 5G bands supported by iPhones in 2020, 2021, 2022

Smartphones	5G NR Bands (sub-6 GHz)	5G NR Bands (mmWave)
Apple iPhone 12 Pro (US version)	n1, n2, n3, n5, n7, n8, n12, n20, n25, n28, n38, n40, n41, n66, n71, n77, n78, n79	N258, n260
Apple iPhone 13 Pro (US version)	n1, n2, n3, n5, n7, n8, n12, n20, n25, n28, n29, n30, n38, n40, n41, n48, n66, n71, n77, n78, n79	N258, n260, n261
Apple iPhone 14 Pro (US version)	n1, n2, n3, n5, n7, n8, n12, n14, n20, n25, n26, n28, n29, n30, n38, n40, n41, n48, n53, n66, n70, n71, n77, n78, n79	N258, n260, n261

Crowded Front End - Filters are critical!

3

Acoustic Resonator

Spurious modes leads to interference with the front-end communication channels and signal distortion! How to suppress these modes?

Key parameters:

Source: R. Lu, JMEMS 2020

- k_t^2 electromechanical coupling
- Q quality factor
- C_0 static capacitance
- ω_s resonant frequency

Spurious modes suppression

Indirect excitations

Source: H. Iwamoto, IUS 2018

Direct excitations

Source: S. Zhang, TMTT 2020

- Introduction and Motivations
- Solidly Mounted Lithium Niobate Thin Film
- Piezoelectric Coupling Properties Analysis
- Implementation and Measurements
- Conclusion

Suspended LiNbO₃ Acoustic Wave Resonator

Advantages

- Maximum acoustic impedance mismatch
- Great frequency scalability
- High electromechanical coupling

Air gap

Shear Horizontal fundamental (SHO mode)

Limitations

- Poor power handling capability due to heat dissipation issue
- Mechanically fragile

Fundamental asymmetric lamb mode (A0 mode)

Solidly Mounted LiNbO₃ Resonator

LiNbO₃ bonded on high acoustic velocity substrate

- High K²
- High structural strength
- High power handling

A0 mode

SH0 mode

Material	Fundamental shear velocity (m/s)	Acoustic impedance (kg/m²/s)	Thermal conductivity (W/m/k)
a-Si	5902	1.25e+7	1.5
SiO ₂	3687	8.11e+6	1.1-1.4
Sapphire	6045	2.4e+7	32.5

Introduction and Motivations

- Solidly Mounted Lithium Niobate Thin Film
- Piezoelectric Coupling Properties Analysis
- Implementation and Measurements
- Conclusion

Eigenmode analysis of suspended LiNbO₃

Eigenmode analysis of LiNbO₃ on a-Si/Si

Eigenmode analysis of LiNbO₃ on SiO₂/Si

Eigenmode analysis of LiNbO₃ on Sapphire

LiNbO₃ on Sapphire features a narrower gap (22°) between α and β

Frequency domain analysis of LiNbO₃

- The twisting angles will sightly shift from those of eigenmode analysis
- Significant A0 mode can also be excited while maximizing the coupling of SH0 mode in the suspended, a-Si, and SiO₂ type of resonators
- The in-band spurious mode can be fully suppressed without sacrificing the coupling of SHO mode based on LiNbO₃ on sapphire platform

- Introduction and Motivations
- Solidly Mounted Lithium Niobate Thin Film
- Piezoelectric Coupling Properties Analysis
- Implementation and Measurements
- Conclusion

Sapphire SH-SAW Resonator

- LiNbO₃/a-Si/c-Si platform displays the SHO mode at 2.52 GHz and a strong spurious mode (A0 mode) at 2.25 GHz
- LiNbO₃/sapphire shows a spurious-free response with an effective electromechanical coupling (k_t²) of 22%

- Introduction and Motivations
- Solidly Mounted Lithium Niobate Thin Film
- Piezoelectric Coupling Properties Analysis
- Implementation and Measurements
- Conclusion

Conclusions

- This work demonstrates the intrinsically excited spurious mode can be suppressed by twisting the piezoelectric coupling properties on solidly mounted platforms.
- The LiNbO₃/Sapphire platform can fully suppress A0 mode without sacrificing the coupling (22%) of SH0 mode.
- Upon further optimization, this idea could be applied to other targeted acoustic waves, structures and materials.

Acknowledgement and Q&A

- Nanosystem Fabrication Facility at HKUST
- Funding support from Hong Kong Research Grants Council

Thank You!

Further discussion is welcome at:

eeyyang@ust.hk

