



#### TH1F 319-XE605

# A D-Band Vector Network Analyzer Extension Module Based on a SiGe Reflectometer MMIC

J. Romstadt<sup>1</sup>, S. Hauptmeier<sup>1</sup>, T. T. Braun<sup>1</sup>, A. Zaben<sup>1</sup>,

M. Krüner<sup>1</sup>, K. Aufinger<sup>2</sup>, J. Barowski<sup>1</sup>, N. Pohl<sup>1,3</sup>

<sup>1</sup>Ruhr-University Bochum, Bochum, Germany

<sup>2</sup>Infineon Technologies, Neubiberg, Germany

<sup>3</sup>Fraunhofer FHR, Wachtberg, Germany





#### **Motivation**



- Interest in D-Band (110 170 GHz) in research and industry rises
- Enabled by high-quality measurement technology
- Vector network analyzers used to characterize discrete and integrated circuits, systems, antennas, or materials
- Capability of calibration enables measurements with a high dynamic range



Tektronix, "Introduction to VNA Basics," March 2017 https://download.tek.com/document/70W\_60918\_0\_Tek\_VNA\_PR.pdi



Tektronix, "Introduction to VNA Basics," March 2017 https://download.tek.com/document/70W 60918 0 Tek VNA PR.pdf





### **Motivation**



- Vector network analyzers require external frequency extension modules
  - Expensive
  - Limited flexibility in some measurement setups, e.g., on-chip measurements



https://www.formfactor.com/product/probes/infinity/infinity-waveguide-probe/



https://www.formfactor.com/product/probes/infinity/infinity-waveguide-probe/









- Architecture
- Characteristics
- DUT measurement
- Conclusion





## **Architecture - Block diagram**



#### Idea: Integrate high-frequency circuit elements on one SiGe MMIC







### **Architecture - Board**



- MMIC mounted on Rogers RT/duroid 5880 Board
  - Connections via Bondwires
- Differential MMIC in- and outputs
- D-Band Interface:
  - Differential substrate integrated waveguide to rectangular waveguide interface
- Additional FR4 with OP-Amps is plugged on











- Architecture
- Characteristics
  - Directivity
  - Dynamic range
  - Stability
- DUT measurement
- Conclusion





## **Characteristics - Directivity**













## **Characteristics – Dynamic range**



#### Receiver dynamic range (RDR)

- Difference between OIP1dB of one receiver and noise floor at an RBW of 10 Hz
- Receiver could not be driven into saturation due to limitations of measurement equipment
- Noise floor of receive signal is calculated
  - Noise figure could only be simulated
- RDR ranges from 106dB to 126dB







## **Characteristics – Dynamic range**



#### System dynamic range (SDR)

- Connect two modules with a thru
- Normalize traces of S<sub>21</sub> and S<sub>12</sub>
- Disconnect modules
- Ranges from 61 dB to 75 dB













## **Characteristics - Stability**



- Magnitude and phase stability
- Connect models with a thru
- Normalize S<sub>ij</sub> traces
- Monitored maximum deviation is plotted after monitoring for 1 hour









- Architecture
- Characteristics
- DUT measurement
- Conclusion





### **DUT** measurement - Results



- Measurement of WR4.3 waveguide
- Comparison to VDI VNAX modules
- TRL calibration
- Below cut-off:
  - SDR is exceeded
- Capability of calibration is verified









- Architecture
- Characteristics
- DUT measurement
- Conclusion
  - Comparison
  - Summary





## **Conclusion - Comparison**



| Ref.      | Topology<br>(Ports) | Freq. (GHz) | Dynamic range (dB)[RBW]                   | DUT<br>Interface   |
|-----------|---------------------|-------------|-------------------------------------------|--------------------|
| [11]      | VNA (1)             | 50-100      | RDR: 72.5[100 kHz]<br>SDR: 72.5[100 kHz]  | Chip-Pads<br>Probe |
| [12]      | VNA (2)             | 4 - 32      | RDR: 100.9[100 kHz]<br>SDR: 76.6[100 kHz] | Coax               |
| [13]      | VNAX (1)            | 70-110      | RDR: 125[10 Hz]                           | Chip-Pads<br>Probe |
| [14]      | VNAX<br>(1)         | 75-110      | SDR <sup>1</sup> : 110[10 Hz]             | Chip-Pads<br>Probe |
| [15]      | VNA (2)             | 0.01-26     | RDR: 133[10 Hz]                           | Coax               |
| This work | VNAX (2)            | 110-170     | RDR: 129[10 Hz]<br>SDR: 75[10 Hz]         | RWG                |

Uses max. TX power at DUT interface instead of max. lin. output IF power





## **Conclusion - Summary**



- A D-Band VNA extension module based on a SiGe MMIC was presented
- Crucial parameters were discussed
  - Stability measurement shows potential of SiGe
    MMIC-based modules
- Proof of concept with WR4.3 measurement
- System dynamic range can be increased with higher transmit power















Thank you for your attention!

