

Th1G - 3

A 24–31GHz 28nm FD-SOI CMOS 3:1 VSWR Resilient Inductive Hybrid Coupler-Based Doherty Power Amplifier

G. Diverrez¹, E. Kerhervé¹, M. De Matos¹, A. Cathelin²

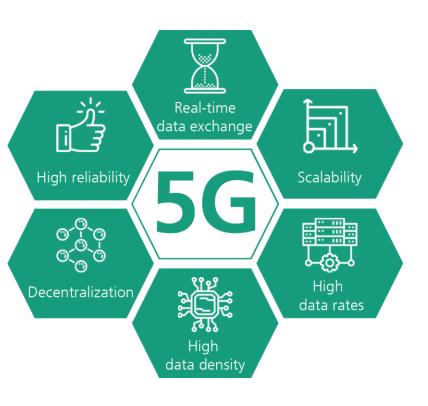
¹Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France

²ST Microelectronics, Crolles, France

Outline

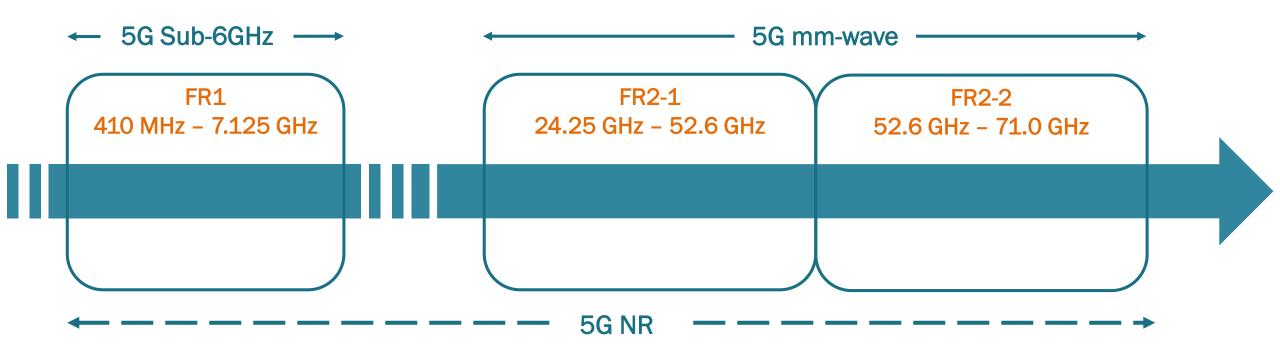
- Motivations & Challenges
- ☐ Proposed Inductive Hybrid Coupler-based Doherty PA
- Measurements results
- □ Conclusion

Outline


- Motivations & Challenges
- Proposed Inductive Hybrid Coupler-based Doherty PA
- Measurements results
- Conclusion

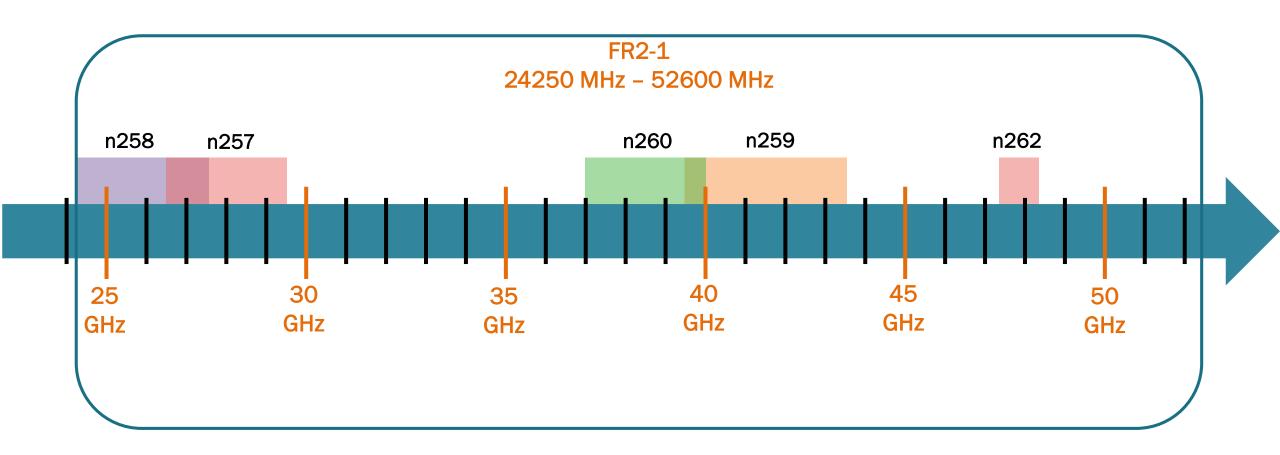
Development of the 5G New Radio

- Demand for modern wireless communications
 - High data rates
 - High reliability
 - Long battery life
- Requirement for RF transmitters (64QAM signals)
 - High linearity
 - Wideband behavior
 - High efficiency up to deep PBO
 - VSWR Robustness
- > KEY WORDS : Linearity, Efficiency, VSWR Robustness, Wideband



5G NR spectrum

- 5G NR spectrum is composed of two frequency ranges:
 - 5G Sub-6 GHz
 - 5G mm-wave



5G NR spectrum

➤ Band of interest: 24.25 – 29.5 GHz, i.e. 20% relative bandwidth

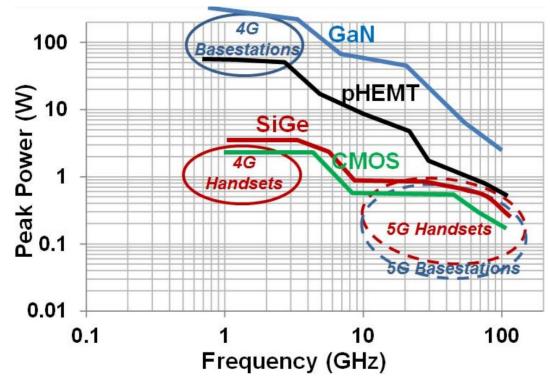
From Beamforming...

5G relies on beamforming antenna arrays that require for PA:

- moderate output power
- high efficiency

	Handset	Access Point	Base Station	Backhaul
EIRP (avg)	30 dBm	45 dBm	$55~\mathrm{dBm}$	60 dBm
N_{ant}	4-6	32	64	256
P_{avg} / PA	11-15 dBm	12 dBm	16 dBm	9 dBm
P_{max} / PA	20-24 dBm	21 dBm	25 dBm	18 dBm
$Efficiency_{avg}$	20 %	20 %	20 %	20 %
DC Power	0,4-0,6 W	$2,5~\mathrm{W}$	12 W	10 W

[1] P. M. Asbeck, N. Rostomyan, M. Ozen, B. Rabet, and J. A. Jayamon, "Power amplifiers for mm-wave 5g applications: Technology comparisons and cmos-soi demonstration circuits," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3099–3109, 2019.



... to CMOS technologies choice

CMOS technologies are favored for :

- their production low cost
- their integration high capacity

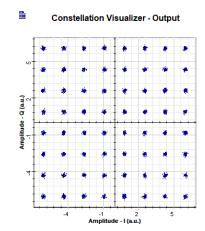
[1] P. M. Asbeck, N. Rostomyan, M. Ozen, B. Rabet, and J. A. Jayamon, "Power amplifiers for mm-wave 5g applications: Technology comparisons and cmos-soi demonstration circuits," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3099–3109, 2019.

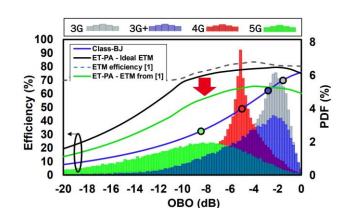
Requirements for 5G PA

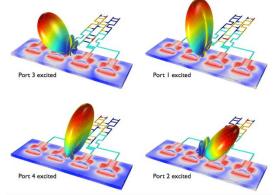
High linearity over 100 MHz bandwidth

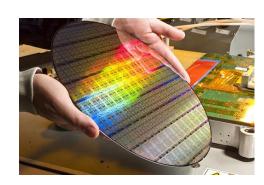
5G signals use spectrally efficient modulation schemes (high order QAM) over large bandwidths

High efficiency up to deep power back-off


5G high-order QAM signals result in high peak-to-average power ratio (PAPR)


1.5:1 VSWR Immunity

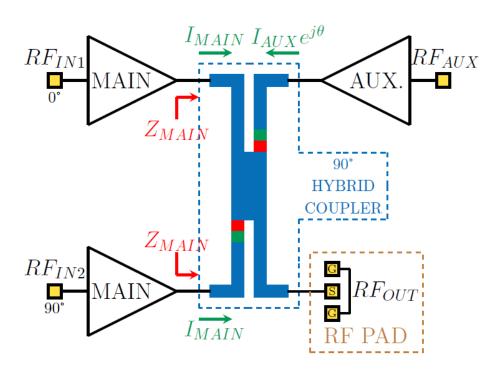

Beamforming antenna arrays exhibit large impedance variations which induce VSWR variations


Compactness

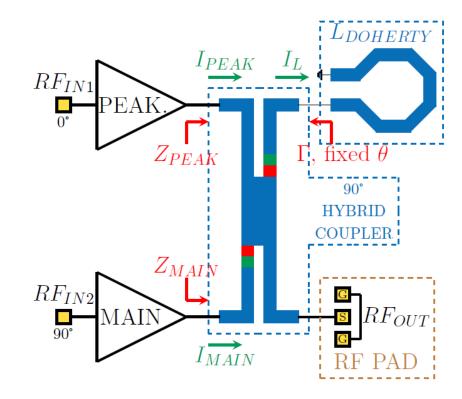
A high level of integration for power amplifiers is needed due to their large size

Outline

- Motivations & Challenges
- ☐ Proposed Inductive Hybrid Coupler-based Doherty PA
- Measurements results
- Conclusion



From LMBA to Doherty Principle



Conventional LMBA

$$Z_{MAIN_{(LMBA)}} = Z_0.(1 + \sqrt{2} \frac{I_{AUX}}{I_{MAIN}} e^{j\theta})$$

Proposed solution

$$Z_{MAIN_{(DOHERTY)}} = Z_0.(1 + \sqrt{2} \frac{\Gamma.I_L}{I_{MAIN}} e^{j\theta})$$

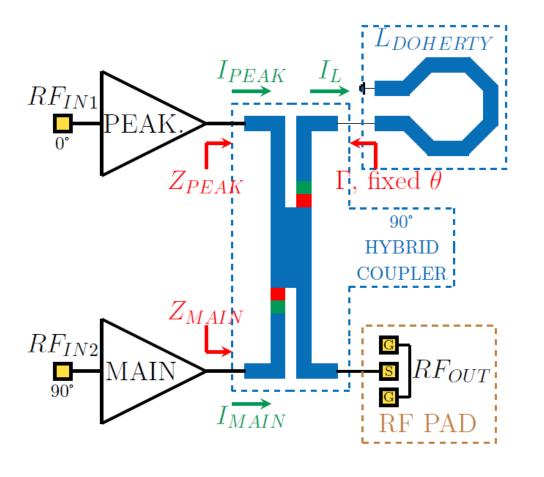
From LMBA to Doherty Principle

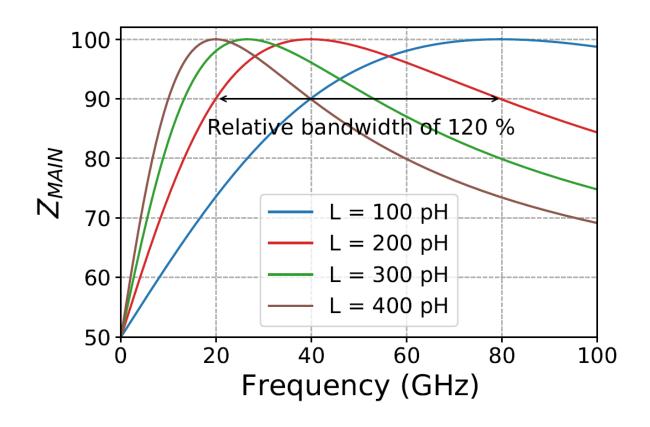
- Since the load is purely reactive, the signal is reflect:
 - with a phase shift $\theta_L = tan^{-1} \left(\frac{X_L}{Z_0} \right)$
 - without attenuation ($|\Gamma| = 1$)
- The load impedance at the main amplifier output becomes:

$$Z_{MAIN} = Z_0.(1 + e^{j\theta})$$

 $lue{}$ A load of 2 Z_0 is thus presented at the main amplifier output if :

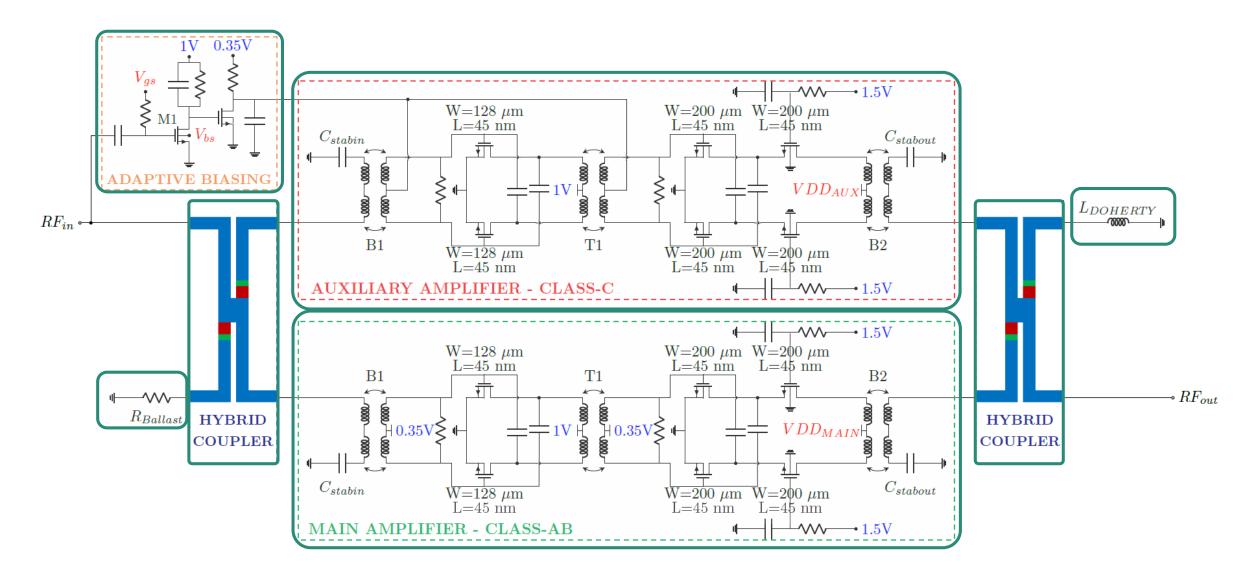
$$\theta = 2\theta_{CPL} + \theta_L = -\frac{\pi}{2} + \theta_L = 0$$



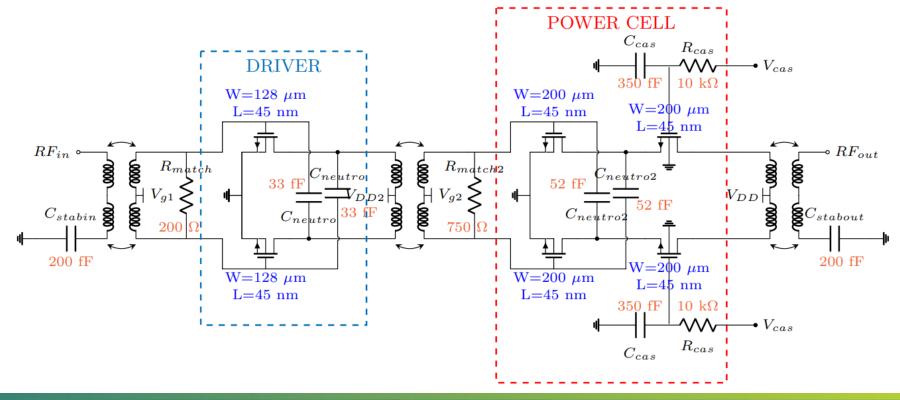


From LMBA to Doherty Principle

■ The architecture achieves 120 % relative bandwidth



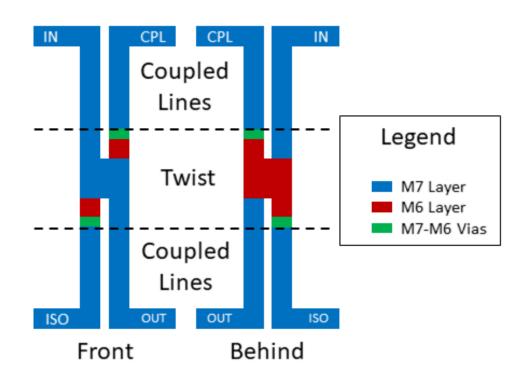
Chosen Architecture

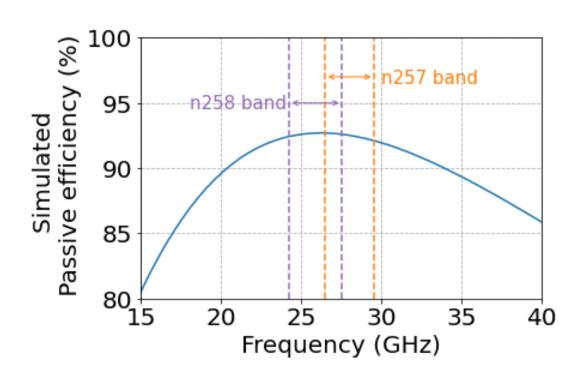


Class-AB Elementary Power Unit

The elementary power cell is composed of:

- A differential two-stacked power cell
- A differential common source driver

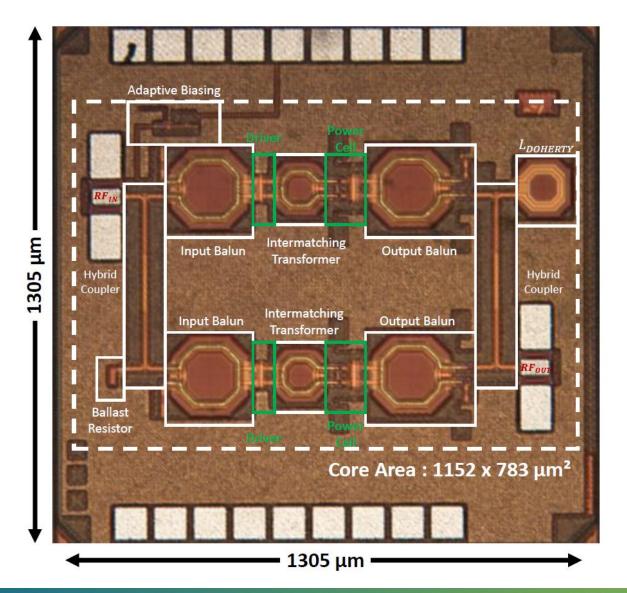



90° Twisted Hybrid Couplers

■ Twisted hybrid couplers are chosen for :

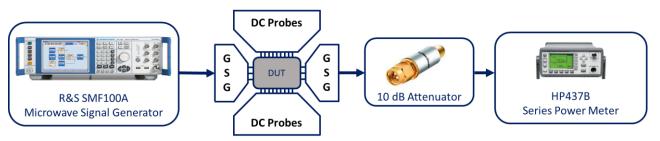
- their wideband behavior
- their low insertion losses

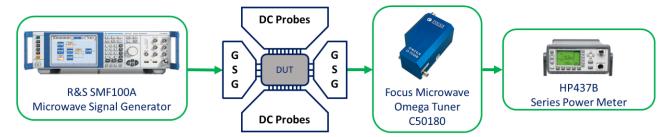
Outline

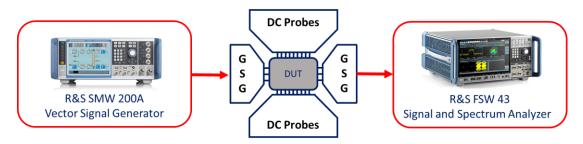

- Motivations & Challenges
- □ Proposed Inductive Hybrid Coupler-based Doherty PA
- Measurements results
- Conclusion

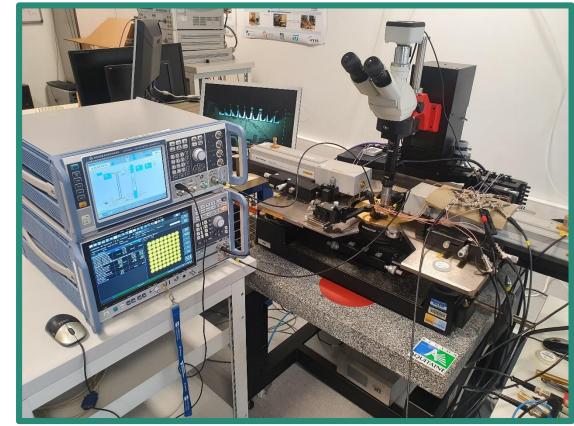
Die Micrograph

- ST Microelectronics CMOS 28nm FD-SOI
- Total Area : 1305 x 1305 µm²
- □ Core Area : 1152 x 783 µm²




Measurement Setup


CW Measurements

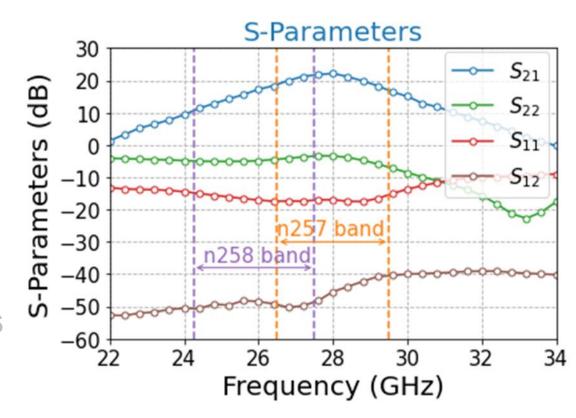


CW Measurements with load pull tuner

Modulation Signal Measurements

Symmetrical configuration

S Parameters


- The input is well matched $(S_{11} < -15dB)$
- Maximum S₂₁ gain of 21dB at 28GHz
- $S_{21} > 10$ dB is maintained

☐ CW Measurement at 26 GHz

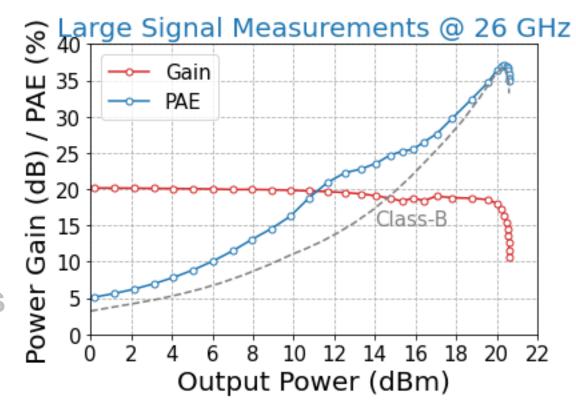
- PAE_{max} = 37 % PAE_{6dBPBO} = 25 %
- $P_{sat} = 20.6 \text{ dBm}$

☐ CW Measurement over frequency bands

- $PAE_{max} > 29 \% (max. 37\% at 27GHz)$
- PAE_{6dBPBO} > 21 % (max. 25% at 26GHz)
- $P_{sat} > 18.5 \text{ dBm (max. } 20.6 \text{ dBm at } 26GHz)$

Symmetrical configuration

■ S Parameters


- The input is well matched $(S_{11} < -15dB)$
- Maximum S₂₁ gain of 21dB at 28GHz
- $S_{21} > 10$ dB is maintained

□ CW Measurement at 26 GHz

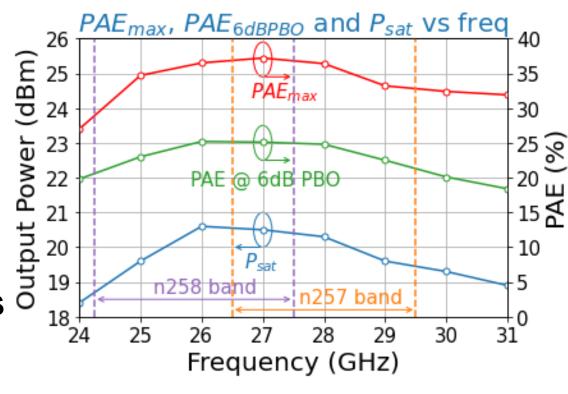
- $PAE_{max} = 37 \% PAE_{6dBPBO} = 25 \%$
- $P_{sat} = 20.6 \text{ dBm}$

☐ CW Measurement over frequency bands

- $PAE_{max} > 29 \% (max. 37\% at 27GHz)$
- PAE_{6dBPBO} > 21 % (max. 25% at 26GHz)
- $P_{sat} > 18.5 \text{ dBm (max. } 20.6 \text{ dBm at } 26\text{GHz})$

Symmetrical configuration

■ S Parameters


- The input is well matched $(S_{11} < -15dB)$
- Maximum S₂₁ gain of 21dB at 28GHz
- $S_{21} > 10$ dB is maintained

☐ CW Measurement at 26 GHz

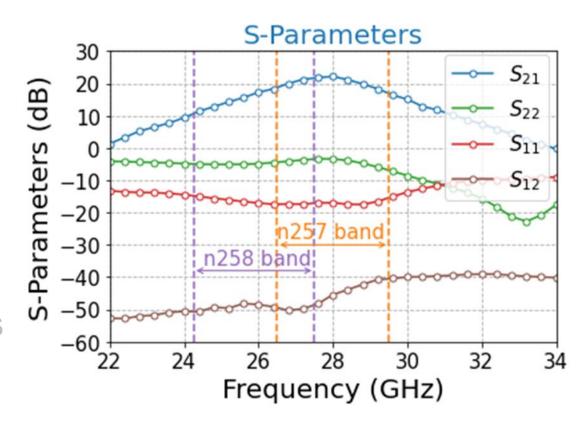
- PAE_{max} = 37 % PAE_{6dBPBO} = 25 %
- $P_{sat} = 20.6 \text{ dBm}$

□ CW Measurement over frequency bands

- $PAE_{max} > 29 \% (max. 37\% at 27GHz)$
- $PAE_{6dBPBO} > 21 \% \text{ (max. } 25\% \text{ at } 26GHz)$
- $P_{sat} > 18.5 \text{ dBm (max. } 20.6 \text{ dBm at } 26GHz)$

Asymmetrical configuration

S Parameters


- The input is well matched $(S_{11} < -15dB)$
- Maximum S₂₁ gain of 21dB at 28GHz
- $S_{21} > 10$ dB is maintained

☐ CW Measurement at 26 GHz

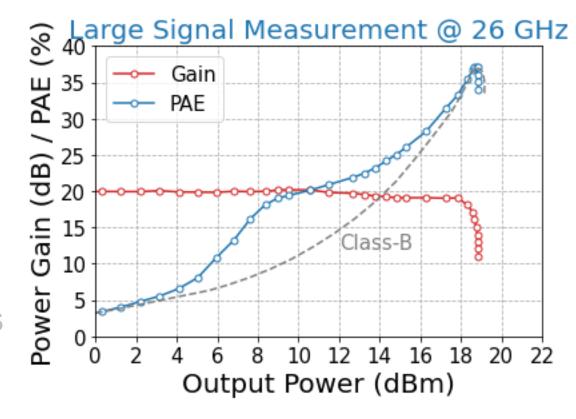
- PAE_{max} = 37 % PAE_{6dBPBO} = 22 %
- $P_{sat} = 18.8 \text{ dBm}$

☐ CW Measurement over frequency bands

- $PAE_{max} > 29 \% (max. 37\% at 27GHz)$
- PAE_{6dBPBO} > 19 % (max. 22% at 26GHz)
- $P_{sat} > 17.2 \text{ dBm (max. 19 dBm at 26GHz)}$

Asymmetrical configuration

■ S Parameters


- The input is well matched $(S_{11} < -15dB)$
- Maximum S₂₁ gain of 21dB at 28GHz
- $S_{21} > 10$ dB is maintained

□ CW Measurement at 26 GHz

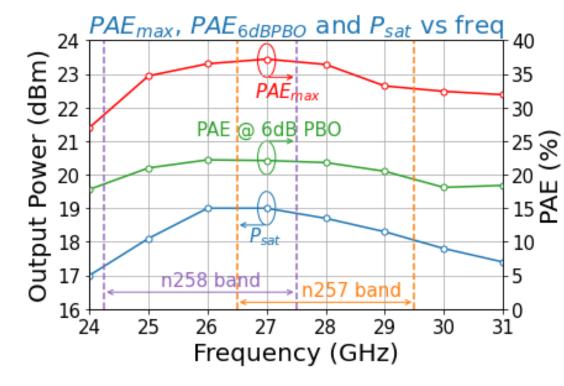
- $PAE_{max} = 37 \% PAE_{6dBPBO} = 22 \%$
- $P_{sat} = 18.8 \text{ dBm}$

☐ CW Measurement over frequency bands

- $PAE_{max} > 29 \% (max. 37\% at 27GHz)$
- PAE_{6dBPBO} > 19 % (max. 22% at 26GHz)
- $P_{sat} > 17.2 \text{ dBm (max. 19 dBm at 26GHz)}$

Asymmetrical configuration

■ S Parameters

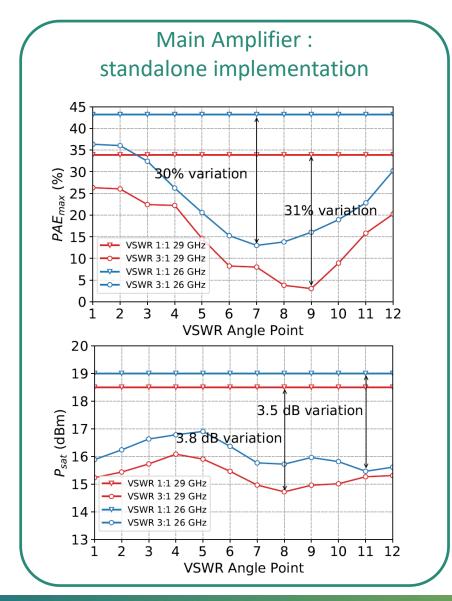

- The input is well matched $(S_{11} < -15dB)$
- Maximum S₂₁ gain of 21dB at 28GHz
- $S_{21} > 10$ dB is maintained

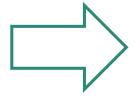
☐ CW Measurement at 26 GHz

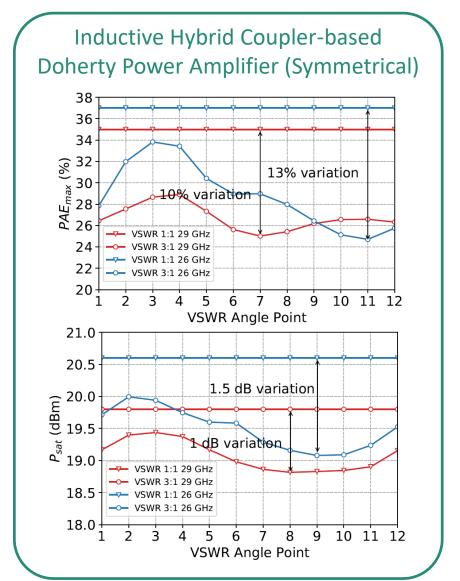
- PAE_{max} = 37 % PAE_{6dBPBO} = 22 %
- $P_{sat} = 18.8 \text{ dBm}$

□ CW Measurement over frequency bands

- $PAE_{max} > 29 \% (max. 37\% at 27GHz)$
- $PAE_{6dBPBO} > 19 \% \text{ (max. } 22\% \text{ at } 26GHz)$
- $P_{sat} > 17.2 \text{ dBm} \text{ (max. } 19 \text{ dBm at } 26\text{GHz})$

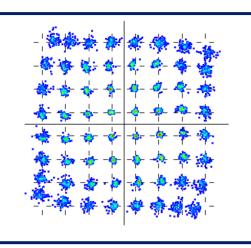


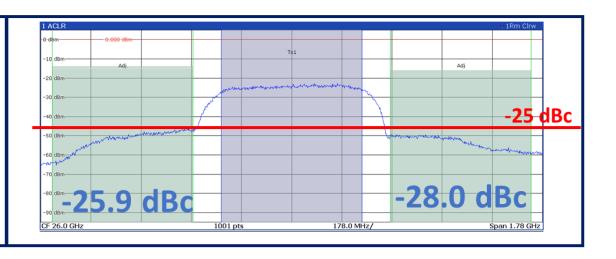




VSWR Robustness

Modulation Measurements




☐ Using 3 Gbits/s (500 MHz) 64-QAM signal without DPD:

- $P_{avg} = 13.10 \text{ dBm}$
- $PAE_{avg} = 23\%$
- EVM = -27.3 dB
- ACLR = -25.9 dBc

Symmetrical operation

Single-carrier 64-QAM Frequency = 26 GHz Average P_{out} = 13.10 dBm Average PAE = 23 % EVM_{RMS} = -27.3 dB

IMS Comparison with the State-of-the-Art

	_									
Reference	This Work			[1] Garay ISSCC '21	[2] Li ISSCC '18	[3] Li ISSCC '20	[4] Ma ISSCC '22	[5] Qunaj ISSCC '21	[6] Mannem ISSCC '20	
Technology	28nm FDSOI CMOS		45nm SOI CMOS	0.13μm SiGe	45nm SOI CMOS	55nm bulk CMOS	28nm bulk CMOS	45nm SOI CMOS		
Architecture	Inductive Hybrid Coupler-Based Doherty			Dual-Drive PA Core	Continuous Mode	Inverse Outphasing	3-way Parallel/Series	Doherty-Like LMBA	Series/Parallel Reconfigurable	
Operation mode	Symmetrical		Asymmetrical		.,,	Class F/F-1	Tx	Doherty		Doherty
Supply (V)	2 (Main) 2 (Aux)		2 (Main) 1.5 (Aux)		1.9	1.9	2	2.4	1.5	2
Frequency (GHz)	26		26		28	28.5	29	28	36	39
Gain (dB)	20.5		20.5		20.4	20	30	16.1	18	12.5*
P _{sat} (dBm)	20.5		18.8		20.1	17	22.7	25.5	22.6	20.8
P _{1dB} (dBm)	19.5		17.8		19.1	15.2	N.A.	24.3	19.6	20.2
PAE _{max} (%)		37	3	37	48.3	43.5	41.3	25.2	32	33.3
PAE _{P1dB} (%)	35		34		45.5	39.2	N.A.	24.4	30.5	32.2
PAE _{6dBPBO} (%)	25		22		23*	19*	30.6	20.4	24.2	22.4
PAE _{12dBPBO} (%)	13.5		14.2		6*	6*	10*	14.2	8*	10*
PAE _{max} for 7GHz BW (%)	31		31		N.A.	27*	17*	N.A.	30*	N.A.
VSWR Immunity	3:1 VSWR		3:1 \	3:1 VSWR No		No	No	No	No	3:1 VSWR
Modulation scheme	64 QAM	5G NR FR2	64 QAM	5G NR FR2	5G NR FR2	64-QAM	64-QAM	64-QAM	64-QAM	64-QAM
PAPR (dB)	6.7	9.6	6.7	9.6	9.6*	6	6	6	6	6
Data Rate (Gb/s) or BW	1.5	100 MHz	1.5	100 MHz	200 MHz	6	3	1.5	12	3
EVM _{rms} (dB)	-27.3	-21.5	-26.6	-20.94	-25	-27.6	-25.3	-25.2	-25	-22.7
P _{avg} (dBm)	13.1	9.69	10.4	8.45	10.7	10.7	16.0	17.7	16	12.2
PAE _{avg} (%)	23	17	20	18	15.5	21.4	23.8	17.5	22	16.1
ACLR (dBc)	-25.9	-25.8	-25.2	-26.2	-26.6	N.A.	-33	-27*	-25*	-25.4
Core Area (mm²) 0.90			0.21	0.29	0.96	0.54	1.44+	1.18		

The circuit demonstrates:

- Highest peak/PBO PAE among PAs with VSWR robustness
- Better efficiency performances than LMBA
- Best PAE_{max} / PAE_{6dBPBO} among asymmetrical Doherty PAs
- Wideband Doherty behavior over a 7GHz band
- Better efficiency performances with 5G modulated signals

^{*} Graphically estimated

⁺ Chip area

PAEmax@7GHz: minimum PAEmax over a 7GHz band around the PA's PAEmax

Outline

- Motivations & Challenges
- Proposed Inductive Hybrid Coupler-based Doherty PA
- Measurements results
- □ Conclusion

Conclusion

- ✓ A new hybrid coupler-based Doherty architecture using an inductive load on the output hybrid coupler isolation port is presented in this paper.
- ✓ A precise control of the adaptive bias triggering threshold is achieved by using the back gate feature of ST Microelectronics' 28 nm FD SOI
- ✓ The Doherty power amplifier achieves high peak and deep power back-off PAE with a 3:1 VSWR immunity while maintaining linearity, making it suitable for 5G NR FR2 wireless communication links.

Acknowledgements

This research was supported by STMicroelectronics for the chip manufacture and Rohde & Schwarz / Focus Microwave for measurements.

Thank you for your attention!

