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Acoustic 2.5um 0.25um 0.125um

Commercial Mobile Defense Application

[ >6GHz } * Broad spectrum

\Ernenced MoRte Broacdhend « Conventionally EM wave based components: CPW, microstrip, cavity:;
2 o s moderate performance and large size

"\ Work and Play in the Cloud

i . :
_L‘i# pre— * Demands for higher performance and smaller footprint
L]

i iy o _ * EM wavelength too long, acoustic wavelength too short

Voice

\\Mission critical application

/

Wissive madine ype u.t,a-,e.;a.,.eaga:?w.ate.,cy * Acoustic wave components: BAW, SAW, high performance and small sizes
2GHz - 6GHz <2GHz * Demands for scaling to much beyond S band
* Acoustic wavelength too short, EM wavelength too long

y —— Commercial Mobile
Smart City Future IMT t\elf Driving Car )
@ ._E\  Conventionally focused on S band and below

Is there another wave phenomenon with wavelength between EM and acoustic?
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Magnetostatic Wave (MSW) Acoustic Wave
PRIIAFNERR R R Lattice Wave ' -1
/50888858880 - e
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MLattlce of Magnetic Dipoles Lz?c?ice ofﬁoms
&_f = —"}"M A H.gff — AM x ILM b4 H;_uf[}
Landau-Lifshitz equation Elastic wave equations (Piezo)
+ Maxwell equations + Maxwell equations
+ quasi-magnetostatic approximation + quasi-electrostatic approximation
Features of MSW

* Exists in ferro/ferrimagnetic materials, dipole moments originate from unpaired outer shell electrons spins
Single crystal yttrium iron garnet exhibits the lowest damping for MSW

Material limited Q > 10,000 from UHF to K, band, and is frequency independent

Group velocity on the order of 1000 km/s, and multi-octave tunable based on applied DC magnetic bias

A promising technology with wavelength between acoustic wave and EM wave, and high Q
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}d  Magnetostatic Wave (MSW) Supported in A Thin Film

Wy = —YUoMs
wo = —YHoHpc
yuo = 2.8MHz/0e

6000 // MSSW

MSFVW

Frequency (MHz)

Magnetostatic Surface Wave Precession MSBVW
- —
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L wAVAS ., Wi 0 5 y
\ 5\ ﬁ
Wavelength . 40 50 60 70 80 90 100
HDC kd
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Magnetic | Electric
Name Symbol Units : Name | Symbol | Units QL
Magnetomotive force (MMF) F= /H - dl | ampere-turn Electromotive force (EMF) | € = fE -dl | volt
_il 3

Magnetic field H ampere/meter | | Electric field E volt/meter = newton/coulomb M b3 A e

Magnetic flux & weber Electric current / ampere I A | | | Ad
' Hopkinson's law or Rowland's law |F= PR, | ampere-turn Ohm's law &= IR e | @ * + +
i Il Il ] . - ' ' 1 i AS

Reluct 1h Electrical it R h
| eluctance | R _ | enry | | Electrical resistance |  ohm | AT - .-I:'#q—

1 - o5
Permeance P=— henry Electric conductance G=1/R 1/ohm = mho = siemens 1 -
R

| Relation between B and H 'B=puH _ Microscopic Ohm's law J=0cE E'

Magnetic flux density B B tesla Current density J ampere/square meter

Permeability H henry/meter | Electrical conductivity o siemens/meter

* This work focus on MSFVW for easier biasing and future integration
— Device placed in the air gap of a yoke for biasing
— Larger gap leads to higher magnetic reluctance, bigger magnets (electro or
permanent) are needed to generate the same amount of bias
— Biasing perpendicular to film thickness requires smaller air gap, easier for
future integration and miniaturization
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* Three tunable MSFVW resonator coupled by
impedance inverters
* To achieve low passband insertion loss and
high stopband rejection, requires resonator
behaves as open at resonance and short off-
resonance
* High resonator quality factor
* High energy coupling

0 2 4 {rm})
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Electrode
hRF Z Parameter Plot 1 HFSSDesignt A'Z'SZVRSZ
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HBias A % ]
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g ] SRR 4
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Rio jwLy C _2-37'5-‘ s }-25 %
L3 [| 4= Coupling « Lyy/ Ly ‘ W=70um ™ o
o 207 1 =1.7mm 2nd Order
- --758
. . 1 1.421x10°A/m ;
* RF current generates RF H-field, which qgmd b bt L1 / - .FHUF’?W?F‘??', A0 PN
applies torque to magnetic dipole moments, wod 423 @20 Hie SH0 WS 9S00 978 B
) i Frequency (GHz) [GHZz] =
which excites MSW
* Directly placing electrode on YIG enable tight Normal Dispersion
coupling between RF excitation and MSW Indicative of MSFVW
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* Each resonator has slightly different width Simulated Response
(73um, 70um, and 67um) to shift their resonant ~2dB Passband Insertion Loss
frequencies to synthesize 3" order response ~40dB Stopband Rejection

* Resonators are coupled by quarter wavelength
lines (@7GHz)
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* Devices biased using permanent magnet

=8« Position of magnet controlled by a high precision positioner
—— « Control z field by positioning the chip at different vertical positions
* Field from different vertical position is calibrated by a Hall sensor

E N52 Permanent Magnet

Copper Cover

Chip
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Passband Linearity:
e« At-16dBm input power in passband (~2.3GHz),

3"d order tone below noise floor (89dBm) — T 1T
. . . . 40 | undame anes . 1
* Highly linear, as filter equivalent to a small *  3rd Order Intermodulation 1P 37 8dBm
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* We have successfully designed, fabricated and characterized a planar
monolithic YIG MSFVW Chebyshev bandstop filter

» Stopband center frequency is tuned from 4 GHz to 8 GHz

* The filter exhibits about 2dB of passband IL at the center of the tuning range,
with a 55 dB maximum stopband rejection, and a 37.8 dBm passband IIP3

* |Incorporated with proper design of tunable compact electromagnet, this new
filter design can enable compact tunable notch for blocker rejection
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