

Th02A-2

Micro-machined Tunable Magnetostatic Forward Volume Wave Bandstop Filter

Y. Feng¹, S. Tiwari¹, S. A. Bhave¹, and R. Wang²

¹OxideMEMS Lab, Purdue University, West Lafayette, USA ²FAST Labs[™], BAE Systems, Inc., Nashua, USA

Outline

- Motivation
- Micro-machined YIG Thin Film MSW Filter Design
- Device Fabrication
- Measurements
- Summary

Motivation

Defense

	λ/ 2 @2GHz	λ/ 2 @20GHz	λ/ 2 @40GHz
EM	75mm	7.5mm	3.5mm
Acoustic	2.5µm	0.25μm	0.125μm

Commercial Mobile

Defense Application

- Broad spectrum
- Conventionally EM wave based components: CPW, microstrip, cavity; moderate performance and large size
- Demands for higher performance and smaller footprint
- EM wavelength too long, acoustic wavelength too short

Commercial Mobile

- Conventionally focused on S band and below
- Acoustic wave components: BAW, SAW, high performance and small sizes
- Demands for scaling to much beyond S band
- Acoustic wavelength too short, EM wavelength too long

Is there another wave phenomenon with wavelength between EM and acoustic?

Motivation

Magnetostatic Wave (MSW)

Lattice of Magnetic Dipoles

$$rac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} imes \mathbf{H}_{\mathrm{eff}} - \lambda \mathbf{M} imes (\mathbf{M} imes \mathbf{H}_{\mathrm{eff}})$$

Landau-Lifshitz equation

- + Maxwell equations
- + quasi-magnetostatic approximation

Elastic wave equations (Piezo)

Lattice of Atoms

Acoustic Wave

- + Maxwell equations
- + quasi-electrostatic approximation

Features of MSW

- Exists in ferro/ferrimagnetic materials, dipole moments originate from unpaired outer shell electrons spins
- Single crystal yttrium iron garnet exhibits the lowest damping for MSW
- Material limited Q > 10,000 from UHF to K_a band, and is frequency independent
- Group velocity on the order of 1000 km/s, and multi-octave tunable based on applied DC magnetic bias
- A promising technology with wavelength between acoustic wave and EM wave, and high Q

Magnetostatic Wave (MSW) Supported in A Thin Film

Magnetostatic Forward Volume Wave

Magnetostatic Backward Volume Wave

Magnetostatic Surface Wave

$$\omega^2 = \omega_0 \left[\omega_0 + \omega_M \left(\frac{1 - e^{-kd}}{kd} \right) \right]$$

$$\omega_{M} = -\gamma \mu_{0} M_{S}$$

$$\omega_{0} = -\gamma \mu_{0} H_{DC}$$

$$\gamma \mu_{0} = 2.8 MHz/0e$$

Magnetic			Electric		
Name	Symbol	Units	Name	Symbol	Units
Magnetomotive force (MMF)	$\mathcal{F} = \int \mathbf{H} \cdot \mathrm{d}\mathbf{l}$	ampere-turn	Electromotive force (EMF)	$\mathcal{E} = \int \mathbf{E} \cdot d\mathbf{l}$	volt
Magnetic field	Н	ampere/meter	Electric field	E	volt/meter = newton/coulomb
Magnetic flux	Φ	weber	Electric current	1	ampere
Hopkinson's law or Rowland's law	$\mathcal{F}=\Phi\mathcal{R}_m$	ampere-turn	Ohm's law	$\mathcal{E} = IR$	
Reluctance	\mathcal{R}_{m}	1/henry	Electrical resistance	R	ohm
Permeance	$\mathcal{P}=rac{1}{\mathcal{R}_{ m m}}$	henry	Electric conductance	G = 1/R	1/ohm = mho = siemens
Relation between B and H	$\mathbf{B}=\mu\mathbf{H}$		Microscopic Ohm's law	$\mathbf{J}=\sigma\mathbf{E}$	
Magnetic flux density B	В	tesla	Current density	J	ampere/square meter
Permeability	μ	henry/meter	Electrical conductivity	σ	siemens/meter

- This work focus on MSFVW for easier biasing and future integration
 - Device placed in the air gap of a yoke for biasing
 - Larger gap leads to higher magnetic reluctance, bigger magnets (electro or permanent) are needed to generate the same amount of bias
 - Biasing perpendicular to film thickness requires smaller air gap, easier for future integration and miniaturization

- Three tunable MSFVW resonator coupled by impedance inverters
- To achieve low passband insertion loss and high stopband rejection, requires resonator behaves as open at resonance and short offresonance
 - High resonator quality factor
 - High energy coupling

- RF current generates RF H-field, which applies torque to magnetic dipole moments, which excites MSW
- Directly placing electrode on YIG enable tight coupling between RF excitation and MSW

Normal Dispersion Indicative of MSFVW

- Each resonator has slightly different width (73um, 70um, and 67um) to shift their resonant frequencies to synthesize 3rd order response
- Resonators are coupled by quarter wavelength lines (@7GHz)

Simulated Response

- ~2dB Passband Insertion Loss
- ~40dB Stopband Rejection

Device Fabrication

- 3mm, 3936 Oe 5mm, 3216 Oe

- Devices biased using permanent magnet
- Position of magnet controlled by a high precision positioner
- Control z field by positioning the chip at different vertical positions
- Field from different vertical position is calibrated by a Hall sensor

N52 Permanent Magnet On Z Stage \

Copper Cover

Chip

- Measured Frequency Tuning by Applying Different Magnetic Bias
- One octave of tuning
- Tuning efficiency 2.8MHz/Oe
- Passband IL ~1.5dB toward
 2GHz, ~3dB toward 7GHz
- Increase passband IL is due to mismatch loss

Passband Linearity:

- At -16dBm input power in passband (~2.3GHz),
 3rd order tone below noise floor (89dBm)
- Highly linear, as filter equivalent to a small inductor in passband
- Stopband center frequency tuned to 5.85GHz

Summary

- We have successfully designed, fabricated and characterized a planar monolithic YIG MSFVW Chebyshev bandstop filter
- Stopband center frequency is tuned from 4 GHz to 8 GHz
- The filter exhibits about 2dB of passband IL at the center of the tuning range,
 with a 55 dB maximum stopband rejection, and a 37.8 dBm passband IIP3
- Incorporated with proper design of tunable compact electromagnet, this new filter design can enable compact tunable notch for blocker rejection

