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Motivation

Defense Application

• Broad spectrum

• Conventionally EM wave based components: CPW, microstrip, cavity;

moderate performance and large size

• Demands for higher performance and smaller footprint

• EM wavelength too long, acoustic wavelength too short

Commercial Mobile

• Conventionally focused on S band and below

• Acoustic wave components: BAW, SAW, high performance and small sizes

• Demands for scaling to much beyond S band

• Acoustic wavelength too short, EM wavelength too long

Defense

Commercial Mobile

λ/2@2GHz λ/2@20GHz λ/2@40GHz

EM 75mm 7.5mm 3.5mm

Acoustic 2.5µm 0.25µm 0.125µm

Is there another wave phenomenon with wavelength between EM and acoustic?
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Motivation

Magnetostatic Wave (MSW) Acoustic Wave

Lattice Wave

Lattice of Atoms
Lattice of Magnetic Dipoles

Elastic wave equations (Piezo)

+ Maxwell equations 

+ quasi-electrostatic approximation

Landau-Lifshitz equation

+ Maxwell equations 

+ quasi-magnetostatic approximation

Features of MSW

• Exists in ferro/ferrimagnetic materials, dipole moments originate from unpaired outer shell electrons spins

• Single crystal yttrium iron garnet exhibits the lowest damping for MSW

• Material limited Q > 10,000 from UHF to Ka band, and is frequency independent

• Group velocity on the order of 1000 km/s, and multi-octave tunable based on applied DC magnetic bias

• A promising technology with wavelength between acoustic wave and EM wave, and high Q
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Micro-machined YIG Thin Film MSW Filter Design

Magnetostatic Wave (MSW) Supported in A Thin Film
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Micro-machined YIG Thin Film MSW Filter Design

• This work focus on MSFVW for easier biasing and future integration

– Device placed in the air gap of a yoke for biasing

– Larger gap leads to higher magnetic reluctance, bigger magnets (electro or 

permanent) are needed to generate the same amount of bias

– Biasing perpendicular to film thickness requires smaller air gap, easier for 

future integration and miniaturization 
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Micro-machined YIG Thin Film MSW Filter Design

• Three tunable MSFVW resonator coupled by 

impedance inverters

• To achieve low passband insertion loss and 

high stopband rejection, requires resonator 

behaves as open at resonance and short off-

resonance

• High resonator quality factor

• High energy coupling
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Micro-machined YIG Thin Film MSW Filter Design

• RF current generates RF H-field, which 

applies torque to magnetic dipole moments, 

which excites MSW

• Directly placing electrode on YIG enable tight 

coupling between RF excitation and MSW

HBias

hRF

YIG

H

Coupling ∝ LM0/ Lt0

Electrode

W=70um

L=1.7mm

1.421x105 A/m

2nd Order

Fundamental

Normal Dispersion

Indicative of MSFVW
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Micro-machined YIG Thin Film MSW Filter Design

• Each resonator has slightly different width 

(73um, 70um, and 67um) to shift their resonant 

frequencies to synthesize 3rd order response

• Resonators are coupled by quarter wavelength 

lines (@7GHz)

Simulated Response

~2dB Passband Insertion Loss

~40dB Stopband Rejection

Mismatch Loss
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Device Fabrication

Ion Mill

Lift-off
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Measurement

• Devices biased using permanent magnet

• Position of magnet controlled by a high precision positioner

• Control z field by positioning the chip at different vertical positions

• Field from different vertical position is calibrated by a Hall sensor

3mm, 3936 Oe 5mm, 3216 Oe

N52 Permanent Magnet

On Z Stage

Copper Cover
Chip
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Measurement

W=73um

L=1000um
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Measurement

Measurement

Simulation

• Center frequency 6.07GHz

• 10dB rejection BW ~1.1%, 20dB 

rejection BW ~0.7%

Bias = 3900 Oe

Bias = 3550 Oe
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Measurement

• Measured Frequency Tuning by 

Applying Different Magnetic Bias

• One octave of tuning

• Tuning efficiency 2.8MHz/Oe

• Passband IL ~1.5dB toward 

2GHz, ~3dB toward 7GHz

• Increase passband IL is due to 

mismatch loss
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Measurement

Passband Linearity:

• At -16dBm input power in passband (~2.3GHz), 

3rd order tone below noise floor (89dBm)

• Highly linear, as filter equivalent to a small 

inductor in passband

• Stopband center frequency tuned to 5.85GHz
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Summary

• We have successfully designed, fabricated and characterized a planar 

monolithic YIG MSFVW Chebyshev bandstop filter 

• Stopband center frequency is tuned from 4 GHz to 8 GHz 

• The filter exhibits about 2dB of passband IL at the center of the tuning range, 

with a 55 dB maximum stopband rejection, and a 37.8 dBm passband IIP3

• Incorporated with proper design of tunable compact electromagnet, this new 

filter design can enable compact tunable notch for blocker rejection


