

Th02C 5

Occupant Entry and Exit Event Extraction Using Continuous Wave Radar and Wavelet Analysis

Shekh M. M. Islam^{#1}, Olga Boric-Lubecke^{*2}, Victor M. Lubecke^{*3}

*Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh

*Department of Electrical and Computer Engineering, University of Hawaii at Manoa, HI, USA

Email: shekh@hawaii.edu, mahmud@du.ac.bd

Overview

- Introduction
- Occupancy sensors
- Current Technology Drawbacks
- Proposed Solution
- Experimentation and Evaluation
- Results
- Conclusion

Introduction

- Lighting and climate control for unoccupied space accounts for energy waste and related financial burden.
- 50% of overall building energy consumption → HVAC Systems
- Residential and commercial building >> 40% of total energy consumption
- Reliable occupancy estimation and entry/exit detection-> energy management

Occupancy Sensors

- Lighting & HVAC operation can be automatically controlled by sensors.
- These systems use PIR, ultrasonic, and camera-based technology.
- Currently various systems use sensors which detect a moving person.

Current Technology Challenges

- False alarms
 - Ultrasonics: Noise, rain, wind errors
 - PIR: heat (sun, pipes...), cold (AC).
- Missed detection
 - Blocked line of site errors
 - Missed stationary subjects (sitting, sleeping,...)
 - Often results in nonuse

 Advanced radar technology can avoid errors, while remaining competitive for cost and power consumption..

Potential Solution: Doppler Radar

- Medical radar → respiration and heart rate
- Radar technology → HVAC control and sensing
- Tracking, Localization → FMCW radar
 - MIMO architecture → DOA Estimation
- CW radar is simpler architecture than FMCW radar
- CW Radar → RSS method → estimating occupant's numbers
 - RSS method → dependent on propagation environment
- Most of the Radar-based occupancy sensor → number of occupants present in a room
 - Entry/exit event is measured → supplementary sensors (camera, doorway sensor)
- This work is focused on extracting entry/exit events extractions → CW Radar

Theoretical Background

Doppler-CW Radar Motion Detection

$$f_d = 2f v(t)/c$$

Periodic motion \rightarrow shift in phase $\phi(t) = (4\pi/\lambda)x(t)$

Wavelet Analysis

- Fast Fourier Transform (FFT)→ time domain into frequency domain
 - Stationary signal is well suited for finding maximum amplitude
- Fast Fourier Transform (FFT) is not suitable
 - Non-stationary Signal contains high frequency content short duration → body movement
- The continuous WT of signal x(t) is defined as:

$$x(\tau,a) = \frac{1}{\sqrt{a}} \int x(t) f^*(\frac{t-\tau}{a}) dt$$

x(t) is the continuous time signal a is the scaling factor $f^*\left(\frac{t-\tau}{a}\right)$ is the daughter wavelet

- Morlet wavelet is mostly used in physiological signal processing
- Two important parameters:
 - Maximum wavelet coefficient frequency (MWCF)
 - Wavelet coefficient energy (WCE)

$$WCE = \frac{1}{N} \sqrt{\left(\sum_{I=1}^{N} \left| x_{coeff} \right|^2\right)}$$

Hardware Specification

Hardware Specification:

- A 2.4-GHz Quadrature CW Radar System
- Antenna gain: 8 dBi, power: 7 dBm
- Sampling Frequency → 100 Hz

Experimentation and Evaluation

- The 2.4 GHz radar system
 - mounted 2.75 meters above the floor
 - Classroom dimension (6 × 4.5 m)

Results

- After data acquisition
 - Filtering → FIR filter
 - Cut off frequency → 20 Hz

FFT of Segmentation

 Spectrum broadening→ with the number of occupants

Wavelet: Scalogram

Wavelet Scalogram → Occupants

Comparative Analysis

- Wavelet based method
 - Monotonically increasing > with the occupants

Entry and Exit Event Extraction

Box-plot of Entry and Exit Events → MWCF and WCE

Conclusion

- This work explores the feasibility of utilizing single antenna CW Radar
 - Occupants' entry and exit event detection
 - Counting the number of occupants
- A new signal processing approach has been explored → Wavelet analysis
 - MWCF and WCE shows significant variations -> entry and exit event detection
 - MWCF and WCE monotonically increases

 with the number of occupants
- Continued experimentation and algorithm development
 - Different room, larger number of occupants, and different occupant's patterns
- The proposed system has several potential applications
 - Efficient HVAC management, surveillance, and building evacuations

