

Th2D-1

Rotman-Lens-Based Reconfigurable Intelligence Surface mmID with Energy Harvesting Capability

I-Ting Chen¹, Charles A. Lynch III¹, Aline Eid²,
Jimmy Hester³, Manos M Tentzeris¹

¹Georgia Institute of Technology, Atlanta, Georgia

²Univeristy of Michigan, Ann Arbor, Michigan

³Atheraxon, Inc. USA

Non-Line-of-Sight Problem

- 5G signals tend to be blocked in a complex environment
 - Smart city applications
- Current RIS Technology: Phase Arrays
 - High power consumption
 - Low frequency

Motivation

- Lack of Reconfigurable Intelligence Surface at 5G mm-Wave frequency band
 - Low power
 - Small in size

- Rotman-Lens-Based RIS
 - Passive RF Combine
 - Overcome tradeoff between gain and angular coverage
- Embedded harvester

Block Diagram

Symmetric Design

- SPDT Switch
 - Harvest vs. Communication
 - Signal direction selection
 - 270 kHz ASK Modulation
- Suppress retrodirective signals
- Delay the modulation to maximize signal strength

(b) RIS Design Harvesting Mode

(c) RIS Design Communication Mode

Design Fabrication

- Additive manufacturing
 - Inkjet printing
- Of-the-shelf components selection
- Much smaller size than phase arrays

12 cm

Measurement Setup

- Mechanical switch for simple control
- 1.54m from 28 GHz horn antennas with 41 dBm EIRP
- Sweeping from -70° to +70°

Energy Harvesting

- Half wave rectifier at 28 GHz
- System operates at 2.5 dBm input power
 - Consume 159.6 uW

Communication

- Signal ASK modulation at 270 kHz
- Suppress retrodirective signals
- Align with Rotman Lens radiation patterns

Communication

- Tx/Rx bistatic configuration to achieve high sensitivity with copolarized design
- Design can achieve sensitivity up to the thermal noise level of -91.9 dBm

Comparison to Existing Works

- 5G mm-Wave frequency band
- Much smaller in size
- Low power consumption
- Enabled energy harvesting feature
- Limited angle converge

Ref.	[1]	[1]	[2]	This work
Freq.	$10.5\mathrm{GHz}$	$4.25\mathrm{GHz}$	$2.3\mathrm{GHz}$	$28\mathrm{GHz}$
Footprint (cm ²)	1703	363	20794	132
Power Consumption	10 W	$0.72\mathrm{W}$	153 W	159.6 μW
Re-direction Coverage	Elevation Azimuth	Elevation Azimuth	Elevation	Azimuth
Energy Harvesting	N/A	N/A	N/A	Enabled

Summary

- Low-power Rotman Lens-based RIS mmID
 - Energy harvesting feature
 - signal re-direction with modulation at 5G mm-Wave frequency band
- Harvest up to 11m away with 75 dBm EIRP
 - Power consumption: 159.6 uW
- Communicate to mobile users and base stations up to 125 m away with 75 dBm EIRP
- Harvester can be optimized to increase operational range
- Can be scaled up into N x N structure

Questions?

