

Th2E-3

A W-Band SPDT Photoconductive Evanescent-Mode Waveguide Switch

E. T. Der¹, T. R. Jones², A. Fisher², M. D. Sinanis²,

K. Moez¹, D. W. Barlage¹, and D. Peroulis²

¹University of Alberta, Edmonton, Alberta, Canada

²Purdue University, West Lafayette, Indiana, USA

Outline

- Motivation
 - Millimeter-wave high-speed and high-power waveguide switches
- Objective
 - Proposed structure:

Photoconductive evanescent-mode (EVA) waveguide SPDT switch at W-band

- Principle of Operation
- Fabrication
- Experimental Results
 - Small-signal S-Parameter measurement
 - Power handling measurement
 - Switching speed measurement
- Conclusion

- Spectrum is abundant at millimeter-wave (mmWave) bands for 5G and 6G deployment
 - Greater bandwidth and data transfer rates
- Switches are fundamental components in all telecommunication frontends
- Waveguides can be designed to have lowloss propagation up to THz frequencies
- Advantages of silicon micromachining
 - Ease of integration with planar technologies
 - Micrometer precision
 - Volume manufacturing

Photo Credit: Samsung

Photo Credit: Pasternack

This Work

Technology challenge for waveguide switching at mm-wave frequencies.

Electromechanical Waveguide Switches, Quinstar Technology, www.quinstar.com

PIN Diode Switching

ns Switching Speed

High Insertion Loss (IL)

Low W-Band Power Handling

Integrated Form Factor

Low Isolation

Photoconductive Switch

< 5 µs Switching Speed

Low Insertion Loss

High W-Band Power Handling

Integrated Form Factor

High Isolation

Electromechanical Switch

ms Switching Speed

Low Insertion Loss

Very High W-Band Power Handling

Mechanical Structure

Very High Isolation

Photoconductive switches are an excellent compromise between switching speed and power handling.

- Significant promise in light-activated photoconductive switches
 - Old technology, new applications
 - High speed and high power applications
 - Most demonstrations in planar microstrip or CPW technology
 - Low insertion losses (0.37 dB)¹
 - Potential for high power handling (35 W)¹
 - Fast switching times $(17 \mu s)^2$
 - High linearity (IIP3 >77 dBm)³
 - DC bias network isolated from RF signal
- 1. Fisher et al., IEEE IMS, Jun 2021
- 2. Kowalczuk et al., LAPC, Nov 2013
- 3. Pang et al., IEEE IMS, Jun 2018

Microstrip implementation¹

mm-wave photoconductive switches implemented in waveguide structures

Substrate Integrated Waveguides (SIW) SPST¹

SIW SPDT¹

Si Micromachined EVA Waveguides SPST²

W-band: 0.9 dB IL & >25 dB Iso. 60 mW Optical Power

Large structure, integration issues

1. Shepeleva et al., IEEE MWCL, Jul 2021

W-band: 2.2 dB IL & >30 dB Iso. 60 mW Optical Power

Large structure, lossy.

1. Shepeleva et al., IEEE MWCL, Jul 2021

W-band: 0.52 dB IL & >25 dB Iso.

~25 mW Optical Power

Very low optical power, IL, and form-factor

2. Jones et al., IEEE IMS 2022, Jun 2022

Multi-throw switches critical for 5G & 6G frontends have yet to be developed on this highly promising technology.

Objectives

- Develop a high-speed mm-wave SPDT switch with the potential to handle high RF power while reducing optical power requirements compared to state-of-the-art
- 2. Maintain low insertion losses and high isolation comparable to electromechanical waveguide switches with higher switching speeds.
- 3. Allow for future integration with mainstream semiconductor platforms

Proposed structure:

Photoconductive EVA-mode waveguide SPDT switch at W-band manufactured using bulk silicon micromachining technology

Principle of Operation

- The conductivity depend on the dimensions and carrier lifetime of the silicon posts and power density of optical excitation.
 - Higher channels require higher optical power to achieve a given OFF-state conductivity

Photoconductivity Model

$$n = \frac{P_0/h\nu}{\alpha H^2} \tau(n) (1-R)(1-e^{-\alpha H}) \qquad \sigma_{DC} = q(\mu_n + \mu_p) n$$

n – free carrier concentration

 P_0 – optical power density

 $h\nu$ – photon energy (> 1.12 eV for Si)

 τ - free carrier lifetime

R – optical reflection coefficient

 α – optical absorption coefficient

H - post height

1. Jones et al., IEEE T-MTT, Dec 2021

 σ_{DC} – DC photoconductivity

 $\mu_{n,p}$ – mobility

q - electron unit charge

- First order approximation: uniform carrier concentration
- DC photoconductivity a function of P_0 and τ

Principle of Operation

- EVA-mode waveguides have the advantage of very high isolations in the OFF state
 - Combining mismatches from both a waveguide in cutoff and conductive shunt posts
- In the ON state, the switching element behaves as a 2-pole bandpass filter

Frequency (GHz)

85

105

100

Experimental Results

Measured Results

- 0.4 dB extracted switch insertion loss at 95 GHz
- >35 dB isolation up to 100 GHz with just 187 mW total optical power
- 10-dB return loss BW from 84 GHz to 102 GHz

Measured extracted **0.4 dB insertion loss** and **>35 dB isolation** up to 100 GHz

Switching Speed Measurement

*In kind support from Keysight Technologies

Measurement Results @ 90 GHz

- Characterized the mm-wave switching speed of a probe-fed SPST waveguide switch at 90 GHz
- 10-90% rise and 90-10% fall times of 3.8 µs and 1.4 µs, respectively

Measured switching speeds $< 4 \mu s$, where typical electromechanical speeds in the ms!

Performance Comparison Table

State-of-the-art photoconductive mm-wave waveguide switches

Ref.	Technology	Frequency Range (GHz)	10-dB RL FBW (%)	Peak IL (dB)	Isol. (dB)
This Work	Photoconductive Si (Waveguide)	84.3–102.4 ^a	19.4ª	2.0^{a}	36.5 ^a
[16]	Photoconductive Si (SIW)	74 - 85.8	15	2.2	30
[17]	PIN Diode (SIW)	7.0 - 10.2	37	2.1	10

^a Results reported include transition losses.

The proposed switch achieves both **low insertion loss** and **high isolation** in a small **integrated form factor** at W-band compared to the state-of-the-art.

[16] Shepeleva et al., IEEE MWCL, Jul 2021 [17] Lim et al., IEEE MWCL, Aug 2014

Conclusion

- First successful demonstration of a photoconductive EVA-mode waveguide SPDT switch at W-band
- ON-state insertion loss of 0.5 dB at 95 GHz
- OFF-state isolation above 36 dB up to 100 GHz
- Power handling of +32 dBm CW at 85 GHz
- Measured switching speeds less than 4 µs
- Low optical power versus OFF-state isolation and smaller footprint compared to state-of-the-art mm-wave photoconductive switches
- Integrated form factor for future implementation in well-established semiconductor platforms for wide technology adaptation

Acknowledgments

- Funding Acknowledgments
 - Jones Microwave Inc.
 - Natural Sciences and Engineering Research
 Council of Canada (NSERC)
 - CMC Microsystems
 - Purdue University
 - University of Alberta
 - nanoFAB Fabrication & Characterization Centre

Thank you!

