

TH02E-5

Optimization of Coplanar Waveguide Integrated PCM Switches

N. Le Gall, I. Bettoumi, M. Lajaate,

C. Hallepee, D. Passerieux, P. Blondy

XLIM, University of Limoges, France

Outline

- Introduction
- Phase-Change Material RF Switches
- 1st Optimization of the Coplanar Waveguide
- 2nd Optimization of the Coplanar Waveguide
- Conclusion

Introduction

- Low insertion loss
- High isolation
- Bi-stability
- Endurance
- Compacity

SP6T electromechanical relay matrix

≈400 PCM switches SPST

PCM RF Switches

Crystalline phase - GeTe

- High electrical conductivity
- Stable with no energy supply

Top view of PCM switch core

Amorphous phase - GeTe

- Very low electrical conductivity
- Stable with no energy supply

PCM RF Switches

- 1) Mo: DC sputtered and wet etched \rightarrow Heater element
- 2) Si_3N_4 : PECDV and RIE etched \rightarrow Dielectric shield between PCM and heater
- 3) GeTe: RF sputtered and RIE etched → PCM
- 4) Ti/Au: Evaporated and lifted off → Metallization

1st Optimization of the Coplanar Waveguide

Conventional design

Optimized design v1

1st Optimization of the Coplanar Waveguide

Conventional design coplanar waveguide

Optimized design coplanar waveguide

Gap appears longer for narrow ground-to-ground plane distances!

1st Optimization of the Coplanar Waveguide

	Insertion Losses			Reflection Losses	Isolation		FOM
	S ₂₁ @2GHz	S ₂₁ @40GHz	R _{ON DEEMB}	S ₁₁ @ 40 GHz	S ₂₁ @40GHz	C _{OFF}	R _{ON} .C _{OFF}
Conventional design	-0.64 dB	-1.05 dB	4.8 Ω	-16.4 dB	-22.4 dB	3.1 fF	14.9 fsec
Optimized design v1	-0.67 dB	-1.0 dB	5.4 Ω	-17.9 dB	-31.1 dB	1.1 fF	5.9 fsec

2nd Optimization of the Coplanar Waveguide

Optimized design v1

Optimized design v2

- Closer ground plane
- Narrower GeTe gap

2nd Optimization of the Coplanar Waveguide

	Insertion Losses			Reflection Losses	Isolation		FOM
	S ₂₁ @2GHz	S ₂₁ @40GHz	R _{ON DEEMB}	S ₁₁ @ 40 GHz	S ₂₁ @40GHz	C _{OFF}	R _{ON} .C _{OFF}
Optimized design v1	-0.67 dB	-1.06 dB	5.4 Ω	-26.2 dB	-31.1 dB	1.1 fF	5.9 fsec
Optimized design v2	-0.51 dB	-1.02 dB	3.4 Ω	-22.3 dB	-33.3 dB	0.86 fF	2.9 fsec

Conclusions

- Narrower ground-to-ground dramatically enhances isolation, with the same PCM switch core
- Low insertion loss
- High endurance
- High compacity
- Easily integrable in CMOS process

Acknowledgment

The authors would like to thank the DGA (French Ministry of Defense) and the National Research Agency under the ANR-10-LABX-0074-01 Sigma-LIM for institutional grants.

Thank you for your attention.

Do you have any questions?

Annexe 1

