

Th₂F-3

Instrumentation for the Time and Frequency Domain Characterization of Terahertz Communication Transceivers and their Building Blocks

Ingmar Kallfass¹, Dominik Wrana¹, Benjamin Schoch¹, Jeffrey Hesler², Matthias Kohler³, Jean-Pierre Teyssier⁴, Joel Dunsmore⁴

¹University of Stuttgart, Germany

²Virginia Diodes Inc., Charlottesville, VA

³Keysight Technologies Deutschland GmbH, Boeblingen, Germany

⁴Keysight Technologies, Santa Rosa, CA

Outline

Motivation – Terahertz Communication in 6G

• The "CrossLink" Instrumentation

W- and H-Band Waveform Calibration

Conclusion

Terahertz Communication in 6G

- Transceivers for exploitation of new spectrum in 6G applications
- Popular bands
 - E-band (60-90 GHz)
 - D-band (110-170 GHz)
 - H-band (220-325 GHz)

Transceiver Non-Idealities

The CrossLink Instrumentation

Custom Frequency Extention Unit (VCA)

The CrossLink Instrumentation

Calibration Reference Planes

uncal

Upconverted basedband signal (AWG)

Distortions from CCU

cal

Calibrated VCA output

Provide "clean" test signal to DUT

2 cal from 1

Measurement of DUT

Measure distortions from DUT

cal

Calibrated DUT output

Cp. offline digital pre-distortion

W-Band Calibration @ 77.5 GHz

Waveform: QPSK 1 GBd, $\alpha = 0.35^{(*)}$

W-Band Calibration @ 77.5 GHz Waveform: QPSK 4 GBd, α = 0.35

EVM = 27% $P_{RF} = -4.5 dBm$

1 cal

EVM = 3.8% $P_{RF} = -5 dBm$

2 cal from 1

EVM = 14% $P_{RF} = 9 dBm$

EVM = 1.2% $P_{RF} = 9 \text{ dBm}$

W-Band Calibration @ 77.5 GHz Waveform: 256QAM 1 GBd, α = 0.35

EVM = --- $P_{RF} = -8 dBm$

no sync

EVM = 0.6% $P_{RF} = -8 \text{ dBm}$

2 cal from 1

EVM = 3% $P_{RF} = 6 dBm$

EVM = 0.3% $P_{RF} = 6 dBm$

W-Band Calibration @ 77.5 GHz Waveform: 256QAM 4 GBd, α = 0.35

1 uncal

EVM = --- $P_{RF} = -4.5 \text{ dBm}$

no sync

1 cal

EVM = 1.2%

 $P_{RF} = -5 \text{ dBm}$

2 cal from 1

EVM = ---

 $P_{RF} = 9 dBm$

2 cal

EVM = 0.9%

 $P_{RF} = 8 \text{ dBm}$

EVM correction improvement at higher signal levels

H-Band Calibration @ 300 GHz Waveform: 64QAM 1.6 GBd, α = 0.25

EVM = ---P_{RF} = ---

no sync

EVM = 1.9% $P_{RF} = -30 \text{ dBm}$ 2 cal from 1

P_{RF} = ---

2 cal

EVM = 1.6% $P_{RF} = -9 dBm$

H-Band Calibration @ 300 GHz Excitation: QPSK 16 GBd, α = 0.25

EVM = ---P_{RF} = ---

no sync

1 cal

EVM = 22% $P_{RF} = -28.5 dBm$

2 cal from 1

no sync

EVM = 35% $P_{RF} = -7.5 dBm$

Conclusion

Novel CrossLink instrumentation offers versatile platform for the characterization of transceivers and transceiver components dedicated to 6G wireless communication

- Realized in W-band and H-band
- Custom VCA unit for Inline time and frequency domain characterisation
- Inline calibration of wideband complex modulated communication signals at DUT input and DUT output

