

Th2F-4

Array Calibration and Digital Predistortion Training Using Embedded Near-Field Feedback Probes and Orthogonal Coding for Enhancing the Performance of Millimeter-Wave Beamforming Arrays

Ahmed Ben Ayed, Huixin Jin, Bernard Tung
Patrick Mitran, and Slim Boumaiza
Emerging Radio Systems Group
University of Waterloo, Waterloo, Canada

Outline

- Motivation
- Theory
- Measurement Results
- Conclusions
- Acknowledgements

 Mm-wave and sub-THz frequencies will play a critical part in enabling future communication systems

 RF beamforming has been widely adopted at millimeter-wave frequencies

Increase Effective Isotropic Radiated Power (EIPR)

Low implementation complexity

- Nevertheless, RF beamforming arrays suffer from a multitude of nonidealities
 - Linear nonidealities (i.e., phase and gain errors)
 - IC level (e.g., phase and gain control circuitries)

Radiation Pattern

- Board level (e.g., assembly errors, routing)
- Nonlinear nonidealities
 - Power amplifiers

Signal Integrity

To compensate for these nonidealities array calibration and digital predistortion (DPD) techniques need to be deployed

- Different array calibration and DPD techniques have been discussed in the literature
- Existing array calibration techniques can be classified into:

Element-wise array calibration [1-3]	Active array calibration [4-5]
Can calibration for phase and magnitude Errors versus beamformer settings (+)	Cannot calibrate for phase and magnitude Errors versus beamformer settings (-)
Are slow and cannot correct for errors due to heating and current loading (-)	Are fast and can correct for errors due to heating and current loading (+)

Element-Wise Array calibration

[1] Park and Probe

[2] Integrated coupler

Active Array calibration

[3] Over-the-air feedback

For DPD training

[3] Over-the-air feedback

[4] Near-Field feedback

- In this work we propose an active array calibration and DPD training methods that use near-field probes as feedback
- The proposed active array calibration enable phased depended phase and magnitude error correction
- The proposed DPD training method relaxes the contains on the near-field feedback frequency response

- Let E_{ℓ} be the complex valued error at the ℓ 'th antenna element.
- To allow for the calibrating of the phase shifter dependent error, $E_{\ell}(\omega,\phi_{\ell})$, in the following derivation, we assume that

$$E_{\ell}(\omega, \phi_{\ell}) \approx E_{\ell}(\omega, \phi_{\ell} + \pi)$$
 (1)

 The assumption in (1) was validated experimentally on different beamforming ICs

 Consequently, the received signal at the m'th near-field probe can be expressed as follows,

$$Z_m(\omega) = \sum_{\ell=1}^L G\beta_{m,\ell}(\omega)X(\omega)e^{i\phi_\ell}E_\ell(\omega,\phi_\ell)$$
 (2)

Where $\beta_{m,\ell}$ is the coupling coefficient be ℓ 'th antenna element and the m'th near-field probe

• The objective is to estimate $E_{\ell}(\omega,\phi_{\ell})$ using the near-field received signals.

- Using multiple measurements with different phase settings ϕ_{ℓ} , we can solve for E_{ℓ}
- Note, E_{ℓ} is ϕ_{ℓ} dependent \Rightarrow E_{ℓ} should remains constant across the different measurements, i.e.,

$$E_{\ell}(\phi_{\ell}) = E_{\ell}(\phi_{\ell,k}) \forall k = 1 \dots K \text{ and } K \ge L$$
 (3)

- In this work, we make use of the assumption in (2), i.e., $E_{\ell}(\omega, \phi) \approx E_{\ell}(\omega, \phi + \pi)$
- It can be shown that selecting the different phase measurements based of the Walsh-Hadamard matrix H, satisfies (2) and (3), where,

$$\mathbf{H}_{n} = \begin{bmatrix} \mathbf{H}_{n} & \mathbf{H}_{n} \\ \frac{2}{2} & \frac{2}{2} \\ \mathbf{H}_{n} & -\mathbf{H}_{n} \end{bmatrix}, \mathbf{H}_{1} = 1, \mathbf{H}_{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} (4)$$

 Consider a two-antenna array with one nearfield probe, using phase measurements based of the Walsh-Hadamard matrix, H, we have,

$$\begin{split} Z_{1,1}(\omega) &= GX(\omega) \left(\beta_{1,1} e^{j\phi} E_1(\omega, \phi) + \beta_{1,2} e^{j\phi} E_2(\omega, \phi) \right) \\ Z_{1,2}(\omega) &= GX(\omega) \left(\beta_{1,1} e^{j\phi} E_1(\omega, \phi) + \beta_{1,2} e^{j\phi + \pi} E_2(\omega, \phi) \right) \\ \Rightarrow E_1(\omega, \phi) &= \frac{Z_{1,1}(\omega) + Z_{1,2}(\omega)}{2GX(\omega)\beta_{1,1}}, E_2(\omega, \phi) = \frac{Z_{1,1}(\omega) - Z_{1,2}(\omega)}{2GX(\omega)\beta_{1,2}} \end{split}$$

• In general, using M near-field probes and L/M measurements the different $E_{\ell}(\omega,\phi)$ errors can be solved for using the following equation and least squares fitting,

$$\begin{bmatrix} \mathbf{Z}_{1}(\omega) \\ \vdots \\ \mathbf{Z}_{M}(\omega) \end{bmatrix} = GX(\omega)e^{j\phi} \begin{bmatrix} \mathbf{H}\mathbf{B}_{1}(\omega) \\ \vdots \\ \mathbf{H}\mathbf{B}_{M}(\omega) \end{bmatrix} \begin{bmatrix} E_{1}(\omega,\phi) \\ \vdots \\ E_{L}(\omega,\phi) \end{bmatrix}$$
(5)

• With array now calibrated and operated in its nonlinear region, the ℓ 'th PA output can now be modeled as,

$$Y_{\ell} = GV_{\ell}(\omega)e^{j\phi_{\ell}}$$
 (6)

Where $V_{\ell}(\omega) = X(\omega) + N_{\ell}(\omega)$, and $N_{\ell}(\omega)$ is the ℓ 'th PA nonlinear additive error.

- The received signal at the m'th near-field probe can be expressed as $Z_m(\omega) = G \Phi \mathbf{B}_m \mathbf{V}(\omega)$ (7)
- Using a series if L/M measurements (with phases devised from **H**), we have

$$\mathbf{Z}(\omega) = G\mathbf{\Phi} \begin{bmatrix} \mathbf{H}\mathbf{B}_{1}(\omega) \\ \vdots \\ \mathbf{H}\mathbf{B}_{M}(\omega) \end{bmatrix} \mathbf{V}(\omega) (8)$$

Measurement Results

DUT	Custom built 4x4 Huixin Jin
Frequency	37.5 GHz
Signal Modulation BW	400 MHz
Signal Modulation Scheme	256 QAM, OFDM
Sub Carrier Spacing	120 kHz
Cyclic prefix Length	1/16 the FFT Length
Linearization Bandwidth	2 GHz
PAPR	9 dB
# Coefficients	35
Phase settings using in near-field DPD	Walsh-Hadamard matrix

Coupling Coefficients are estimate over a span of 3 GHz with tone spacing of 2MHz

Measurement Results

Measured rms magnitude (Left) and phase (right) errors versus phase shifter settings (8-bits): (a) before calibration, (b) after proposed calibration using NF probes, and (c) after element-wise calibration using a FF probe.

Measured radiation pattern with the array driven with a 400 MHz OFDM signal and the beam electrically steered from -90° to 90°: (a) before calibration, (b) after proposed calibration using NF probes, and (c) after element-wise calibration using a FF probe.

Measurement Results

For 256-QAM signal, the application of DPD allowed for an increase of 2.5 dB in EIRP

Conclusions

- In this work, an active array calibration technique and DPD training method that uses near-field probes have been presented
- The proposed calibration method can calibrate for beamforming-dependent errors in the array (i.e., phase dependent errors)
- The proposed calibration method was able to reduce the imbalance in the radiation pattern side-lobes by up to 2 dB and achieve comparable performance to element-wise far-field-based calibration
- The proposed near-field based DPD training method does not impose stringent requirements on the coupling flatness and can achieve similar linearization performance as far-field based DPD training

Acknowledgements

- The authors would like to thank NXP for providing the ICs used in this project.
- The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support in this research work.
- The authors would also like to thank the Ontario Research Fund (ORF) for providing financial support.
- The authors would like to thank Keysight Technologies Inc. for providing EDA tools and loaning equipment.

References

- [1] A. B. Ayed, P. Mitran and S. Boumaiza, "Novel Algorithm to Synthesize the Tapering Profile for Enhanced Linearization of RF Beamforming Arrays Over a Wide Steering Range," in IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2023.3248151.
- [2] S.-C. Chae, H.-W. Jo, J.-I. Oh, G. Kim, and J.-W. Yu, "Coupler integrated microstrip patch linear phased array for self-calibration," IEEE Antennas Wireless Propag. Lett., vol. 19, no. 9, pp. 1615–1619, Sep. 2020.
- [3] Y. Aoki et al., "An intermodulation distortion oriented 256-element phased-array calibration for 5G base station," in IEEE MTT-S Int. Microw. Symp. Dig., Denver, CO, USA, Jun. 2022, pp. 518–521.
- [4] R. Murugesu, M. Holyoak, H. Chow, and S. Shahramian, "Linearization of mm-wave large-scale phased arrays using near-field coupling feedback for >10 Gb/s wireless communication," in IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Aug. 2020, pp. 1271–1274.
- [5] A. Ben Ayed, Y. Cao, P. Mitran, and S. Boumaiza, "Digital predistortion of millimeter-wave arrays using near-field based transmitter observation receivers," IEEE Trans. Microw. Theory Techn., vol. 70, no. 7, pp. 3713–3723, Jul. 2022

Thank you! abenayed@uwaterloo.ca

Additional Slides

A. Ben Ayed, P. Mitran and S. Boumaiza, "Novel Algorithm to Synthesize the Tapering Profile for Enhanced Linearization of RF Beamforming Arrays Over a Wide Steering Range," in *IEEE Transactions on Microwave Theory and Techniques*, doi: 10.1109/TMTT.2023.3248151.

