

Th2G-2

A Multi-stage 19.2-dBm, 30.4%-PAE D-band Power Amplifier in a 250-nm InP HBT Process

E. Lam¹, K. Ning^{1,3}, A. Ahmed^{1,2}, M. Rodwell¹, J. Buckwalter¹

¹ University of California, Santa Barbara, CA

² Cairo University, Egypt

³ MixComm Inc., Chatham, NJ

Overview

- Introduction
- Device cell design
- Circuit design
- Measurements and simulations
- Conclusion

Motivation

- Several InP PAs demonstrate record efficiencies at D-band
- Highest efficiency PAs currently demonstrate single stage Pas
- This work demonstrates a multi-stage high-efficiency PA with 19.2 dBm Psat at 135 GHz

Teledyne 250-nm InP Technology

Nominal fT/fmax of 370/650 GHz for 4 um emitter length, VCE=1.8 V, Je =2 mA/um

4x6 um common base (CB) Layout

f _{max}	Je,max	Typical Vce	Vknee	# metal (Au) layers
~600 GHz	3 mA/um	2.5 V	0.7 V	4

4x6um InP HBT Operating Bias

- Gain in a device can be controlled through operating bias, but there is a tradeoff with PAE
- Optimum PAE at 140 GHz is around 10% of Imax at 2.5 V which reduces our Fmax to about 350-400 GHz

4x6um InP HBT Degeneration

- Gain can also be controlled through base degeneration, but we tradeoff with OP1dB
 - Higher shunt Cbase gives higher gain, but lower OP1dB
 - Similarly, lower shunt Cbase results in lower gain, but higher OP1dB
- Below we show plots for varying shunt base capacitance values
- PAE is invariant with assumption of lossless embedding and no harmonic tuning

Device Loadpull

- Addition of a base resistor helps to
 - Reduce thermal runaway effects
 - Bias stabilization
 - Out of band RF stability
- Reduction in PAE due to real impedance presented at 140 GHz
 - Add a quarterwave line at the base

w/o base quarterwave line PAE peak 42% Step 5% 5.6 dB gain @peak PAE Pout peak 15.6dBm Step 1dB

w/ base quarterwave line

RF Device Stability

- Stability issues at ~30 GHz without addition of base resistance
- Assuming about 0.5 nH inductance from DC probes

Coupled Line Balun

- Balun uses a compact short section coupled line for differential power combining
- DC feed through center tap
- Open stub added to tune phase balance
- Insertion loss of about 0.75 dB at 140 GHz

2-Stage PA Circuit

- 2-way combined pseudo-differential topology
- Output coupled line balun loss about 0.884 dB including pad loss of 0.13 dB
- Base capacitance tuned for higher OP1dB in output stage, but lowered gain

3-Stage PA Circuit

- Design is identical to 2-stage with an added stage biased slightly lower current
 - 1.2 VCE and 0.79 V Vbe for added first stage

Chip Photograph

S-Parameter Measurements

Measurements (dotted lines) vs simulations (solid lines)

2-stage Measurement Results

- At 135 GHz, 30.4% peak PAE, 19.2% dBm Psat and 14 dB of gain
- Measurements cut off at 135 GHz due to spurs at lower D-band frequencies on VDI extenders
- 3 different die measurements show large gain variations
- EVM relatively unchanged compared to THRU measurement

Measurements (dotted lines) vs simulations (solid lines)

6.4% EVM @-7dBm Pin Freq = 130GHz

3-stage Measurement Results

- Measurement (dotted), simulations (solid)
- At 135 GHz, 23.8% peak PAE, 17.1 dBm Psat, 17.3 dB gain
- Identical RF design with added stage
- Subtle differences in the bias design and placement of TSVs

Comparison

- Highest PAE for this power level at D-band
- 2-stage with 30.4% peak PAE and 19.2 dBm Psat with 14 dB gain
- 3-stage with 23.8% peak PAE and 17.1 dBm Psat with 17.3 dB gain

Table 1. Comparison between State-of-the-Art D-band PAs

Reference	Technology	Frequency (GHz)	Gain (dB)	Psat (dBm)	PAE (%)	Chip Area (mm ²)
This Work	250nm InP HBT	135	14	19.2	30.4	0.59
			17.3	17.1	23.8	0.76
[6]	250nm InP HBT	118-148	7	15.3	32	0.2
[7]	250nm InP HBT	150-175	31.7	23.1-24	13.1-15.7	1.26
[4]	250nm InP HBT	125-150	12.3-15.9	18.9-20.5	14.3-20.8	0.69
[5]	250nm InP HBT	140	8.4	17.3	22.5	0.44 / 0.1*
[8]	250nm InP HBT	110-128	8.5	17.6	32.7	0.024
[9]	45nm CMOS SOI	140	24	17.5	13.4	0.43*
[10]	55nm SiGe	135	24	17.6	17.5	0.18
			22.4	19.3	13	0.76
[2]	130nm SiGe	161	30.7	18.1	12.4	0.42

^{*}core area

Thank You!

Acknowledgements

 Thanks to Semiconductor research corporation (SRC) for funding this project through ComSenTer

