

TH03A-1

Low Delay and Loss Variation Reflection Type Phase Shifter With Sequentially Controlled Varactor Diodes

G. Yang, D. Lee, and B. -W. Min

School of Electrical & Electronic Engineering, Yonsei University, Seoul, Republic of Korea

Outline

- Motivation
- 360° Phase shifting
- Bias Control Scheme
- Measurement
- Conclusion

Motivation

[Example of mimicked signal]

[Mimicked signal generator]

Motivation

[Condition for Phase Shifter]

- 1. 360° Full Coverage
- 2. High Resolution
- 3. High linearity
- 4. Low loss and delay variation

[Mimicked signal generator]

RTPS Fit for Purpose

[STPS]

[VSPS]

[RTPS]

Resolution (2)

Resolution

Linearity

Linearity

Resolution

Linearity

Need for Two Variable Capacitor

Proposed Reflective Loads

[Reflective load]

[360° Full Coverage]

Bias Control Scheme

[Phase Contour]

[Delay Contour]

[Loss Contour]

Sequentially control method can avoid delay and loss peak point

Proposed RTPS

[Photograph of the Manufactured RTPS]

Result

[360° Full Coverage]

[Well Impedance Matched]

Results

[Low Delay Variation]

[Low Loss Variation]

Figure of Merit

$$FoM = \frac{FBW (\%)}{f_c(Hz) \times DV(sec) \times ILV(dB)}$$

- Trade-off relation between FBW and DV, ILV
- DV compared with f_c

Phase error =
$$f_c(Hz) \times DV(sec)$$

The factors that actually affect the system

Performance Comparison

	Reference	f_c	FBW	DV ^{††}	ILV	IL	FoM
		(GHz)	(%)	(ns)	(dB)	(dB)	$(\% / \lambda_c \cdot dB)$
	Seq. ctrl. [†]	3.7	16.2	0.25, 0.9 λ_c	1.3	0.7	13.5
	Conv. ctrl. [‡]	3.7	16.2	1.32, $4.9\lambda_c$	3.0	1.6	1.1
	[2]	4.0	25	0.69, $2.8\lambda_c$	3.1	6.3	2.9
	[3]	33	6.9	0.11, $3.8\lambda_c$	4.0	10	0.5
	[4]	28	7.1	$0.17, 4.7\lambda_c$	0.6	7.8	2.5
	[5]	2.0	10	2.48, $5.0\lambda_c$	1.2	1.0	1.7
	[6]	10	20	0.83, $8.3\lambda_c$	4.6	2.7	0.5
	[7]	2.0	10	2.62, $5.2\lambda_c$	2.2	4.7	0.9
	[8]	1.5	66.7	4.08, $6.1\lambda_c$	5.6	3.1	1.9

The Highest Performance

Conclusion

[Condition for Phase Shifter over 600-MHz bandwidth at 3.7 GHz]

1. 360° Full Coverage → 377° phase shift range

2. High Resolution

→ Continuous resolution

3. High linearity

→ Use only passive component

4. Low ILV and DV

 \rightarrow 250-ps DV and 1.3-dB ILV

Reference

- [1] D. Lee and B. -W. Min, "Demonstration of Self-Interference Antenna Suppression and RF Cancellation for Full Duplex MIMO Communications," in IEEE Wirel. Commun. Netw. Conf. Workshops (WCNCW), Seoul, Korea (South), Apr, 2020, pp. 1-4.
- [2] W. Li, J. Tsai, M. Huang and T. Huang, "A 3.5–4.5-GHz ultra-compact 0.25mm2 reflection-type 360° phase shifter," in IEEE Radio Freq. Integr. Circuits Symp., Baltimore, MD, Jun, 2011, pp. 1-4.
- [3] A. Basaligheh, P. Saffari, S. Rasti Boroujeni, I. Filanovsky and K. Moez, "A 28–30 GHz CMOS Reflection-Type Phase Shifter With Full 360° Phase Shift Range," in IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 11, pp. 2452-2456, Nov. 2020.
- [4] R. Garg and A. S. Natarajan, "A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase Shift Range," in IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4703-4714, Nov. 2017.
- [5] F. Burdin, Z. Iskandar, F. Podevin and P. Ferrari, "Design of Compact Reflection-Type Phase Shifters With High Figure-of-Merit," in IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1883-1893, June 2015.
- [6] J. J. P. Venter, T. Stander and P. Ferrari, "X-Band Reflection-Type Phase Shifters Using Coupled-Line Couplers on Single-Layer RF PCB," in IEEE Microw. Wirel. Compon. Lett., vol. 28, no. 9, pp. 807-809, Sept. 2018.
- [7] C. Lin, S. Chang and W. Hsiao, "A Full-360 Reflection-Type Phase Shifter With Constant Insertion Loss," in IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 2, pp. 106-108, Feb. 2008.
- [8] W. J. Liu, S. Y. Zheng, Y. M. Pan, Y. X. Li and Y. L. Long, "A Wideband Tunable Reflection-Type Phase Shifter With Wide Relative Phase Shift," in IEEE Trans. Circuits Syst. II: Express Briefs, vol. 64, no. 12, pp. 1442-1446, Dec. 2017.
- [9] T.-W. Yoo, J.-H. Song and M.-S. Park, "360° reflection-type analogue phase shifter implemented with a single 90° branch-line coupler," in Electron. Lett., vol. 33, no. 3, pp. 224-226, Jan. 1997.

Thank you

