

Th3A-5

A Reconfigurable Reflective/Absorptive SPDT Plasma Switch

A. Fisher¹, T. R. Jones¹, and D. Peroulis¹
¹Purdue University, West Lafayette, IN, USA

Motivation

Technology Overview

Design

Testing

Results

Comparison

Motivation

Technology Overview

Design

Testing

Results

Comparison

Motivation

- Protect sensitive RFFEs (Rx)
- Static impedance (switched)
 - SMT resistor
 - Limited effectiveness as antenna impedance changes
 - Beamforming
- Low power absorption
 - Power limit to ~33 dBm (max) usually
- SSP a great candidate

Dynamic matching needed.

Solid-State Plasma Solution

Solid-state plasma as a series switch

- Variable control of equivalent resistance
- Optical bias (electrically decoupled)
 - Wide bandwidth (including dc)
 - Low loss
- High power handling
 - 100+ W CW, 30 W hot switching
 - Able to absorb without failure
- Low loss (<0.2 dB)</p>
- High linearity (68.8 dBm IP3)
- Single-digit µs switching

Series Switch

Integrated Optics

SSP a promising candidate.

Motivation

Technology Overview

Design

Testing

Results

Comparison

Principle of Operation

Conductive channel

- Optical excitation $(E_{ph} \ge E_{BG})$
- $-\sigma \propto I_0$ (tunable response)

$$\sigma(z) \approx q(\mu_e + \mu_h) \frac{\tau_a q_e I_0}{h \nu (L_a + \tau_a S)} e^{-z/L_a}$$

Tunable conductivity

Technology Overview

Reliable co-simulations

- Custom script + HFSS
- Material + optical power density -> [S]
- Analog control over conductivity
 - Match any real impedance
 - Reconfigure reflective/absorptive
- Power consumption
 - Low loss = high dc power consumption

Accurate modelling for switch response

True reconfigurable reflective/absorptive switch behavior

Example Switch

Motivation

Technology Overview

Design

Testing

Results

Comparison

Design: Chiplet

Silicon

500

- Chiplet from [10]
 - HRS with patterned metal
 - Gap aperture accepts optical bias
- Microstrip gap
 - Gap placed over via w/ conductive epoxy
- Equivalent circuit
 - Parallel R-C

Placement/Alignment

3075

Equivalent Circuit

675

units in µm

Design: SPST

Series-shunt topology

- Compact
- Wide bandwidth
- Ground plane
 - Inductive stub
 - Via 200 μm
- RO4350B 30-mil
 - $-\varepsilon_r = 3.38$
 - 1.6 mm for 50 ohms

2*0.5 – shunt width 2*0.15 – buffer

3.075 – series length

~4.4 mm

*Excludes added length/width from ground plane

Assembled SPST

Design: SPDT

- Two cascaded SPST switches
- All ports have ability to be matched
- Eval board size similar to SPST
 - Reduce number of cal standards
- Fast switching speeds
 - Down to single-digit µs

Designed for wide bandwidth, compactness

Motivation

Technology Overview

Design

Testing

Results

Comparison

Test Setup

Common excitation

- Via in PCB allows for fiber insertion
 - Board inverted for access
- Optical bias in chiplet aperture
- Series switch
 - Light OFF = Switch OFF
 - Light ON = Switch ON

Optical excitation (bias) setup.

Motivation

Technology Overview

Design

Testing

Results

Comparison

Results: SPST

- dc-6 GHz
- ON state
 - SW 2 ON
 - IL: 0.27 dB (flat response)
 - -RL: >28 dB
- OFF state Isolation
 - SW 1 & 3 ON (var. powers)
 - Ref: 62->22.5 dB
 - Abs: 35->22.5 dB

Dual mode absorptive/reflective switch behavior.

Results: SPDT

- Dc-4 GHz
- IL: <0.43 dB

- 2 & 5 fully ON
- Isolation
 - $RF_{in}-RF_2$: 53-30 dB
 - Com-RF₂: 46-28 dB

2-Fiber Testing

- 2 fully ON, 5 abs. state
- RL: ~20 dB (@ RF₂)
- Isolation
 - $RF_{in}-RF_2$: 40-28 dB
 - Com-RF₂: 36-25 dB

Great performance and reconfigurable

Results: Varying Z₀

1.0j

Powers in mW

1.0

-1.0j

100

Absorptive

- Shunt-configured chiplet in SPST
 - SW 1 ON (varying optical powers)
 - OFF state RL varied

$$-R_P \propto 1/I_0$$

 Optical power swept until RL maximized

 $-Re|Z_{in}| = 50 \Omega @ 21.7 mW$

Control over Re|Z_{in}|

3 GHz

250

-0.2j

Results: High-Power Absorption

- Single shunt element (SW 1)
 - Fully ON state \sim 0 Ω
 - ~1000 mW
 - Reflective
 - Zo state 50 Ω
 - ~21.7 mW
 - Absorptive
- >10 W survivability
- >10 dB @ 33 dBm

High-Power Setup

DC power reduction by 46x
High absorbed power and d

High absorbed power and dual mode operation

Motivation

Technology Overview

Design

Testing

Results

Comparison

- Reflective SPST: lower loss, higher power handling
- Absorptive SPST: DC operation, lower loss, higher absorbed power
- Reflective SPDT: Higher power handling
- Absorptive SPDT: DC operation, lower loss, higher absorbed power

Table 1. Comparison of State-of-the-Art SPST and SPDT Switches.

Ref.	Technology	${}^a\mathbf{Configuration}$	Freq. (GHz)	IL (dB)	b Iso. (dB)	c Iso. (dB)	d RL (dB)	^e Power (W)
This Work	SSP-Si	$SPST_R$	0-6	0.27	62-22	-	-	35
HMC550A	GaAs	$SPST_R$	0-6	0.7	22-10	-	-	<2.5
This Work	SSP-Si	$SPST_A$	0-6	0.27	38-22.5	-	>17.5	35/10+
QPC6014	SOI	$SPST_A$	0.005-6	0.5-1.3	62-35	-	35-15	5/0.8
This Work	SSP-Si	$SPDT_R$	0-4	< 0.43	54-30	47.5-28	-	35
MM5140	MEMS	$\mathrm{SP4T}_R$	0-6	0.4	>27	>27	-	25
This Work	SSP-Si	$SPDT_A$	0-4	< 0.38	39.5-28	37-25	25-16.8	35/10+
HMC8038W	Si	$SPDT_A$	0.1-6	0.6-0.9	60-40	73-51	21-17	3.2/1

^aSubscript denotes reflective (R) or absorptive (A) operation. ^bRF-RF. ^cCom-RF. ^dIsolated port. ^eON state/Absorbed power handling.

- Reflective SPST: lower loss, higher power handling
- Absorptive SPST: DC operation, lower loss, higher absorbed power
- Reflective SPDT: Higher power handling
- Absorptive SPDT: DC operation, lower loss, higher absorbed power

Table 1. Comparison of State-of-the-Art SPST and SPDT Switches.

Ref.	Technology	${}^a{f Configuration}$	Freq. (GHz)	IL (dB)	b Iso. (dB)	^c Iso. (dB)	d RL (dB)	^e Power (W)
This Work	SSP-Si	$SPST_R$	0-6	0.27	62-22	-	-	35
HMC550A	GaAs	$SPST_R$	0-6	0.7	22-10	-	-	<2.5
This Work	SSP-Si	$SPST_A$	0-6	0.27	38-22.5	-	>17.5	35/10+
QPC6014	SOI	$SPST_A$	0.005-6	0.5-1.3	62-35	-	35-15	5/0.8
This Work	SSP-Si	$SPDT_R$	0-4	< 0.43	54-30	47.5-28	-	35
MM5140	MEMS	$\mathrm{SP4T}_R$	0-6	0.4	>27	>27	-	25
This Work	SSP-Si	$SPDT_A$	0-4	< 0.38	39.5-28	37-25	25-16.8	35/10+
HMC8038W	Si	$SPDT_A$	0.1-6	0.6-0.9	60-40	73-51	21-17	3.2/1

^aSubscript denotes reflective (R) or absorptive (A) operation. ^bRF-RF. ^cCom-RF. ^dIsolated port. ^eON state/Absorbed power handling.

- Reflective SPST: lower loss, higher power handling
- Absorptive SPST: DC operation, lower loss, higher absorbed power
- Reflective SPDT: Higher power handling
- Absorptive SPDT: DC operation, lower loss, higher absorbed power

Table 1. Comparison of State-of-the-Art SPST and SPDT Switches.

Ref.	Technology	${}^a{ m Configuration}$	Freq. (GHz)	IL (dB)	b Iso. (dB)	c Iso. (dB)	d R L (dB)	^e Power (W)
This Work	SSP-Si	SPST_R	0-6	0.27	62-22	-	-	35
HMC550A	GaAs	$SPST_R$	0-6	0.7	22-10	-	-	<2.5
This Work	SSP-Si	$SPST_A$	0-6	0.27	38-22.5	-	>17.5	35/10+
QPC6014	SOI	$SPST_A$	0.005-6	0.5-1.3	62-35	-	35-15	5/0.8
This Work	SSP-Si	$SPDT_R$	0-4	< 0.43	54-30	47.5-28	-	35
MM5140	MEMS	$\mathrm{SP4T}_R$	0-6	0.4	>27	>27	-	25
This Work	SSP-Si	$SPDT_A$	0-4	< 0.38	39.5-28	37-25	25-16.8	35/10+
HMC8038W	Si	$SPDT_A$	0.1-6	0.6-0.9	60-40	73-51	21-17	3.2/1

^aSubscript denotes reflective (R) or absorptive (A) operation. ^bRF-RF. ^cCom-RF. ^dIsolated port. ^eON state/Absorbed power handling.

- Reflective SPST: lower loss, higher power handling
- Absorptive SPST: DC operation, lower loss, higher absorbed power
- Reflective SPDT: Higher power handling
- Absorptive SPDT: DC operation, lower loss, higher absorbed power

Table 1. Comparison of State-of-the-Art SPST and SPDT Switches.

Ref.	Technology	${}^a{f Configuration}$	Freq. (GHz)	IL (dB)	b Iso. (dB)	^c Iso. (dB)	d RL (dB)	^e Power (W)
This Work	SSP-Si	$SPST_R$	0-6	0.27	62-22	-	-	35
HMC550A	GaAs	$SPST_R$	0-6	0.7	22-10	-	-	<2.5
This Work	SSP-Si	$SPST_A$	0-6	0.27	38-22.5	-	>17.5	35/10+
QPC6014	SOI	$SPST_A$	0.005-6	0.5-1.3	62-35	-	35-15	5/0.8
This Work	SSP-Si	$SPDT_R$	0-4	< 0.43	54-30	47.5-28	-	35
MM5140	MEMS	$\mathrm{SP4T}_R$	0-6	0.4	>27	>27	-	25
This Work	SSP-Si	$SPDT_A$	0-4	< 0.38	39.5-28	37-25	25-16.8	35/10+
HMC8038W	Si	$SPDT_A$	0.1-6	0.6-0.9	60-40	73-51	21-17	3.2/1

^aSubscript denotes reflective (R) or absorptive (A) operation. ^bRF-RF. ^cCom-RF. ^dIsolated port. ^eON state/Absorbed power handling.

Motivation

Technology Overview

Design

Testing

Results

Comparison

Conclusion

- DC power reduction
 - 46x reduction (1000 -> 21.7 mW)
- High power handling and absorption
- Reflective/absorptive change
- Dynamic impedance matching
- First time planar SSP as a SPDT switch
- First time absorbed power handling in SSP measured

Dynamic impedance matching to absorb high incident powers

- Funding from the Office of Naval Research
 - Award #: N00014-19-1-2549

- Questions?
 - fishe128@purdue.edu or dperouli@purdue.edu

