

Th3B-2

Long-range Chipless RFID for Objects in Translation using Doppler-modulated Depolarizing Tags

A. Azarfar¹, N. Barbot¹, and E. Perret¹ ¹University of Grenoble Alpes, Grenoble-INP, LCIS, Valence, France

Outline

- Introduction
- Motivation
- Model
- Experimental results
- Conclusion

Introduction

Stationary depolarizing chipless tags

Stationary depolarizing tag (Linear Time-Invariant)

Stationary non-depolarizing object and environment (Linear Time-Invariant)

A Depolarizing Chipless RFID Tag for Robust
Detection and Its FCC Compliant
UWB Reading System

Arnaud Vena, Member; IEEE. Etienne Perret, Member; IEEE, and Smail Tedjni, Senior Member; IEEE

 f_H

Introduction

Rotating non-depolarizing chipless tags

Rotating non-depolarizing tag (Linear Time-Variant)

Rotating non-depolarizing object* (Linear Time-Variant)

Measured differential Co-RCS (σ_d^{HH})

Stationary non-depolarizing environment (Linear Time-Invariant)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 70, NO. 1, JANUARY

Chipless RFID Based on Micro-Doppler Effect

Ashkan Azarfar[©], Member, IEEE, Nicolas Barbot[©], Member, IEEE, and Etienne Perret[©], Senior Member, IEEE

Stationary environment

H pol.

Rotating chipless tag

Wr
H pol.

* The cylindrical object considered here does not generate micro-Doppler due to its full rotational symmetry.

Introduction

Stationary depolarizing vs. rotating non-depolarizing tags

Stationary depolarizing chipless tag

- Stationary tag and object responses are decomposed in polarization domain.
- Stationary tag, object, and environment responses are superimposed in frequency domain.

- ✓ Tag and object isolation
- X Tag and environment isolation
- X Read range < 1 meter

Rotating non-depolarizing chipless tag

- Rotating tag and object responses are not decomposed in polarization domain.
- Rotating tag and stationary environment responses are decomposed in frequency domain.
- Rotation is not practical in real applications

- X Tag and object isolation
- ✓ Tag and environment isolation
- ✓ Read range up to 10 meter
- X Not feasible in application

Motivation

Translating depolarizing chipless tags

- Translating tag and object responses are decompose in polarization domain.
- Translating tag and stationary environment responses are decompose in frequency domain.
- Translation is practical in real applications.
- Differential RCS should be redefined since the range of the tag is varying during time.

- ✓ Tag and object isolation
- ✓ Tag and environment isolation
- ✓ Read range up to several meters
- ✓ Feasible in application

Model

Backscattering from translating scatterer

$$L = v(t_2 - t_1)$$

$$\begin{bmatrix} E_x^s \\ E_y^s \end{bmatrix} = \begin{bmatrix} S_{xx} & S_{xy} \\ S_{yx} & S_{yy} \end{bmatrix} \begin{bmatrix} E_x^i \\ E_y^i \end{bmatrix}$$

$$\vec{E}_i(t) = \frac{E_0}{d+vt} e^{-jk(d+vt)} \hat{y}$$

Depolarization

Phase (Doppler) modulation

$$\vec{E}_s(t) = \frac{E_0 S_{yx}(f_0)}{(z - d - vt)(d + vt)} e^{jkz} \hat{x} \qquad (2)$$

Amplitude modulation

Classical radar targets

$$d \gg L$$

$$\vec{E}_s(t) = [-E_0 S_{yx}(f_0)/d^2] e^{-2jk(d+vt)}$$

(3)

Model

128

EEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 9, SEPTEMBER 2021

Differential RCS

Communication_

Differential RCS of Modulated Tag

Nicolas Barbot[©], Olivier Rance[©], and Etienne Perret[©]

- ✓ Definition in the time and frequency domain based on the modulated backscattered field
- ✓ The differential RCS of the tag is independent of the range.
- X In the definition, the range of the tag is supposed to not vary with time

Differential RCS of the translating chipless tag

Magnitude of the backscattered field is significantly affected

by the time-varying range of the tag for $L{\sim}d$.

 $\vec{E}_s(t) = \frac{E_0 S_{yx}(f_0)}{(z - d - vt)(d + vt)} e^{-j2k(d + vt)} e^{jkz}$

• The time-varying magnitude of the backscattered filed is compensated to have the final differential RCS value independent of the range.

Classical form
$$\frac{\sigma_d^{\rm HH}(f_0) {=} 4\pi d^2}{\frac{\left| E_s(t) \right|^2 \Big|_{t_1}^{t_2} - \left| \overline{E_s(t)} \right|_{t_1}^{t_2} |^2}{\left| E_i(t) \right|^2 \Big|_{t_1}^{t_2}}$$

$$\overline{(\cdot)}\Big|_{t_1}^{t_2} = \frac{1}{\Delta t} \int_{t_1}^{t_2} (\cdot) \, dt$$

Model

Differential RCS

Rotating non-depolarizing chipless tag

Classical form
$$\frac{d^{HH}_{\sigma_d}(f_0) = 4\pi d^2}{\frac{|E_s(t)|^2 \Big|_{t_1}^{t_2} - |\overline{E}_s(t)|_{t_1}^{t_2}|^2}{|E_i(t)|^2 \Big|_{t_1}^{t_2}} }$$

Modulation efficiency depends on the rotation radius *R*

Translating depolarizing chipless tag

Modulation efficiency is almost 100 % independent of the translation velocity

Measurement with a conveyor belt

- Cross-polarized TX and RX ant
- $3.2 < f_0 < 3.8 \,\mathrm{GHz}$
- $P_t = 5 \text{ dBm}$
- L = 2.5 m
- v = 0.19 m/s
- 1 < d < 3 m
- Acquisition time 11 seconds
- Sample rate: 256 S/s

Depolarizing chipless tag

Backscattered signal in time and frequency

- At the second resonance of the chipless tag $f_0 = 3.59~\mathrm{GHz}$

$$f_D = \frac{2v}{\lambda} = \frac{2 \times 0.19 \text{ m/s}}{0.08 \text{ m}} = 4.5 \text{ Hz}$$

$$v = 0.19 \text{ m/s}$$

 $d = 1.2 \text{ m}$

Measured differential RCS and identification

$$\sigma_d(f_0) = 4\pi \frac{\overline{(d+vt)^4 |E_s(t)|^2} \Big|_{t_1}^{t_2} - |\overline{(d+vt)^2 E_s(t)} \Big|_{t_1}^{t_2}|^2}{\overline{(d+vt)^2 |E_i(t)|^2} \Big|_{t_1}^{t_2}}$$

$$\overline{(\cdot)}\Big|_{t_1}^{t_2} = \frac{1}{\Delta t} \int_{t_1}^{t_2} (\cdot) \, dt$$

- d = 1.2 m
- v = 0.19 m/s
- $\Delta t = t_2 t_1 = 11 \text{ sec}$
- $V_r(t) = I_r(t) + jQ_r(t)$
- $E_s(t) = \sqrt{4\pi/Z_0 G \lambda^2} V_r(t)$
- $E_0 = \sqrt{2\eta P_t G/4\pi}$

Read range

@
$$f_0 = 3.59 \, \text{GHz}$$

Differential backscattered power as a function of distance

Real measurement

$$P_t = 5 \text{ dBm} \rightarrow d \nearrow 1:0.2:3 \text{ m} \rightarrow P_{bsd}$$

Theory (radar equation)

$$\sigma_d = 4.5 \times 10^{-3}$$

$$P_t = 5 \text{ dBm}$$

$$P_{bs d} = \frac{P_t G}{4\pi d^2} \sigma_d$$

Equivalent measurement

$$d = 1 \text{ m} \rightarrow P_t \searrow 5: -1: -25 \text{ dBm} \rightarrow P_{bs d}$$

Conclusion

- Translating Doppler-modulated depolarizing chipless tags
- Response of the tagged object and the environment are decomposed based on Doppler modulation
- Response of the tag and the object are decomposed based depolarizing property of the chipless tag
- Range-independent definition of the differential RCS is developed
- Robust and long-range chipless RFID for real applications with conveyor belts
- Read range up to 5 meter

Thank you for your attention! Question time...

