

Th₃C-5

Temporal-Spatial Equivalent Virtual Array Technique for Accurate Vital Sign Monitoring

Yuchen Li^{#*}, Jingyun Lu^{#*}, Shuqin Dong^{#*}, Changzhan Gu^{#*}, Junfa Mao^{#*}
#State Key Laboratory of Radio Frequency Heterogeneous Integration (Shanghai Jiao Tong University), China

*MoE Key Laboratory of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China

Outline

- Introduction
- Principles
- Experiments and results
- Conclusion

Introduction

- Non-contact vital signs monitoring has become a hot topic.
- Vital sign detection can be formulated as a spectrum estimation problem.
 - the spectral leakage and resolution limitation caused by sample data length greatly reduce the accuracy of DFT
 - the heartbeat signal can be easily overwhelmed by the third or fourth harmonic of the respiration in frequency spectrum
- Subspace-based DOA estimation algorithm can be used to achieve the vital sign signal with super-resolution spectral estimation performance

Principles – Core idea

 The single-channel data of the SISO radar can be decomposed in the temporal domain to form several sub-arrays, which is equivalent to the multi-channel sub-arrays of the SIMO radar in the spatial domain.

 Model of the displacement of the human thorax surface d(t):

$$d(t) = \sum_{i=1}^{P} A_i \cdot \exp[j(\omega_i t + \varphi_i)]$$

• where P is the number of all frequency components, $A_i/\omega_i/\varphi_i$ are the amplitude, angular frequency and the initial phase of the i-th frequency component, respectively.

IF signal recombined from I/Q channels of CW radar:

$$X_{IF}(t) = A_{IF} \cdot \exp\left[j\left(\frac{4\pi}{\lambda}(d_0 + d(t)) + \Delta\theta(t)\right)\right]$$

• where A_{IF} is the amplitude of the signal, λ is the wavelength, d_0 is the initial distance between human and radar, d(t) is the displacement of the thorax surface and $\Delta\theta(t)$ is the residual phase.

- Single channel data segmentation of CW radar: $\chi_i(t) = \Phi(t (i 1)Kt_s)$
- The single-channel data is divided into M segments, which are equivalent to M receiving array elements. The phase delay between two adjacent array element is Kt_s .

The received data of the whole virtual array can be organized as:

$$\chi(t) = \begin{bmatrix} \chi_{1}(t) \\ \chi_{2}(t) \\ \dots \\ \chi_{M}(t) \end{bmatrix} = A(\omega)S(t) + N(t)$$

$$= \begin{bmatrix} 1 & 1 & \dots & 1 \\ e^{j\omega_{1}Kt_{s}} & e^{j\omega_{2}Kt_{s}} & \dots & e^{j\omega_{P}Kt_{s}} \\ \dots & \dots & \dots & \dots \\ e^{j(M-1)\omega_{1}Kt_{s}} & e^{j(M-1)\omega_{2}Kt_{s}} & \dots & e^{j(M-1)\omega_{P}Kt_{s}} \end{bmatrix} \times \begin{bmatrix} A_{1}e^{j(\omega_{1}t+\varphi_{1})} \\ A_{2}e^{j(\omega_{2}t+\varphi_{2})} \\ \dots & \dots \\ A_{P}e^{j(\omega_{P}t+\varphi_{P})} \end{bmatrix} + \begin{bmatrix} n(t) \\ n(t-Kt_{s}) \\ \dots \\ n(t-(M-1)Kt_{s}) \end{bmatrix}$$

• where $A(\omega) = [a(\omega_1), a(\omega_2), ..., a(\omega_P)]$ stands for the array manifold vector, $a(\omega_i) = [1, e^{j\omega_i Kt_S}, ..., e^{j(M-1)\omega_i Kt_S}]^T$ is the steering vector of ω_i , $S(t) = [s_1(t), s_2(t), ..., s_P(t)]^T$ is the signal vector, and $s_i(t) = A_i e^{j(\omega_i t + \varphi_i)}$ is the signal of the *i-th* frequency component.

• The influence of a movement with a frequency ω_i on a single-channel received signal is equivalent to the influence of an incoming wave with an DOA angle θ_i incident on M receiving array elements.

(assume $d = \lambda/2$)

- To avoid ambiguity when solving angles: $\omega_i K t_s \leq \pi$
 - $K \leq f_s/2f_i$
- Consider that the sin function is most sensitive at 0° :
 - The value of K should be as large as possible
- $K = \lfloor f_S/2f_i \rfloor$ (|·| denote flooring function)

- Principle of equivalence:
 - The number of equivalent linear array elements *M*:

•
$$M = \frac{T_{OI}}{Kt_S}$$

 T_{OI} is the duration of the observation interval t_s is the sampling interval

• The angle of equivalent incident signal θ_i :

•
$$\theta_i = \sin\left(2K\frac{f_i}{f_s}\right)^{-1}$$
 K is the number of snapshots for each equivalent virtual array

• The optimal choice of parameter *K*:

•
$$K = \lfloor f_s/2f_i \rfloor$$

 f_s is the sampling frequency f_i is the frequency of the i^{th} motion

 A coarse-to-fine estimation method is for respiration rate and heart rate monitoring based on the proposed TSEVA theory:

Flow chart of the TSEVA-based vital sign monitoring method

Experiments and results

Radar hardware and experimental setup:

Block diagram (a) and the photo (b) of the SIMO CW radar system

Photograph of the experimental setup

Experiments and results

- The result obtained by the proposed TSEVA-based method is 0.253Hz for respiration and 1.261Hz for heartbeat, which is the same as the result of PPG.
- The proposed TSEVA-based method performed best, with high accuracy and high stability over the entire time period, and RMSE=0.875.

Comparison between the results of different methods and ground truth

Heart rate estimation results over a 10-minute data

Conclusion - Advantage

1. Can acquire movement frequency with super-resolution in shorter T_{OI} :

 T_{OI} = 10s FFT resolution 6bpm

Increased accuracy by about 5%

Conclusion – Advantage

2. All DOA methods can be equally applied to the frequency localization of the target signal.

3. Since every frequency component of motion can be acquired with super-resolution, the relationship between respiratory harmonics and heartbeat can be finely distinguished.

Conclusion – Risk

- High SNR required (prefer FMCW phase information)
- Well balanced I&Q signal required

