

TH3C-6

High-Accuracy Cardiac Activity Extraction Using RLMD-Based Frequency Envelogram in FMCW Radar Systems

Jian-Fu Li and Chin-Lung Yang*

Wireless Innovative System EM-Applied (WISE) Lab,

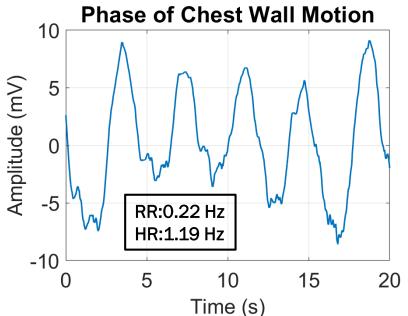
Dep. of Electrical Engineering,

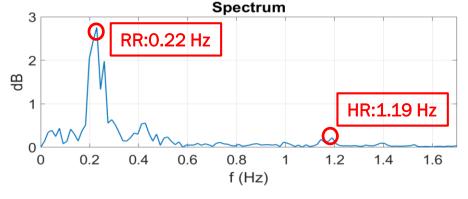
National Cheng Kung University (NCKU), Tainan, Taiwan

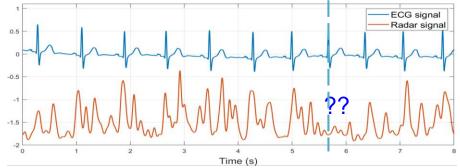
Outline

- Introduction
- Motivation
- Proposed Method
 - RLMD-Based Frequency Envelogram
- Experiment Setup
- Measurement Results
- Conclusion

Introduction




Heart rate variability (HRV) features reflect changes in time intervals between two
consecutive heartbeats, the so called beat-to-beat intervals (BBIs).


The most common devices used to measure BBIs are ECG, PPG, and Doppler radar.
 Among them, only Doppler radar is suitable for long-distance and long-term use.

Radar technology is one of the most promising methods for non-contact BBIs

measurement.

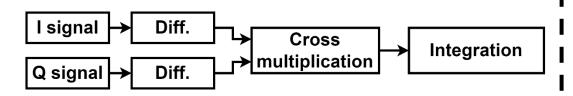
Motivation

- Time-frequency representation (TFR) is a commonly used method for HRV analysis, but TFR suffers from limit of time-frequency resolution.
- Almost all literatures analyzing HRV use CW radar with high sensitivity, but CW radar cannot obtain distance information and its antiinterference ability is not as good as FMCW radar.

Solution:

- Robust local mean decomposition (RLMD)-based TFR [1] is not affected by timefrequency resolution because the signal is decomposed in time domain.
- Preprocessing procedure for the demodulation method must have strong antiinterference ability and enhance signals.

[1] Liu, Zhiliang, et al. "Time-frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis," *Mechanical Systems and Signal Processing*, 2017



Signal Preprocessing

Modified DACM [2]

$$x[n] = \sum_{k=2}^{n} I[k-1]Q[k] - I[k]Q[k-1]$$
 (1)

- The calibrated items and arctangent demodulation can be omitted:
 - ➤ Less susceptible to I/Q imbalance.
 - Demodulation linearity and stability greatly improved.

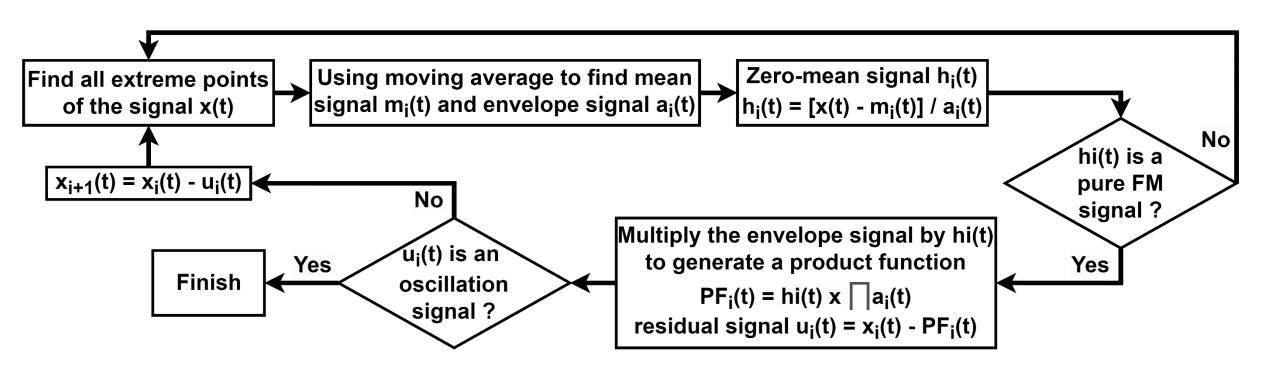
[2] W. Xu, C. Gu and J. -F. Mao, "Noncontact High-Linear Motion Sensing Based on A Modified Differentiate and Cross-Multiply Algorithm," 2020 IEEE/MTT-S IMS, 2020.

Differential Enhancement [3]

$$x_0' = \frac{5(x_1 - x_{-1}) + 4(x_2 - x_{-2}) + x_3 - x_{-3}}{32\Delta t}$$
 (2)

- Frequency band setting of differentiator
 - Suppress low-frequency respiration and enhance the relative high-frequency heartbeat component.
- The short filter length
 - Short window can track cardiac motion sensitively to ensure that the signal is not distorted.

[3] Y. Xiong, Z. Peng, C. Gu, S. Li, D. Wang and W. Zhang, "Differential Enhancement Method for Robust and Accurate Heart Rate Monitoring via Microwave Vital Sign Sensing," *IEEE Trans. Instrument. & Meas.*, 2020.



Local Mean Decomposition

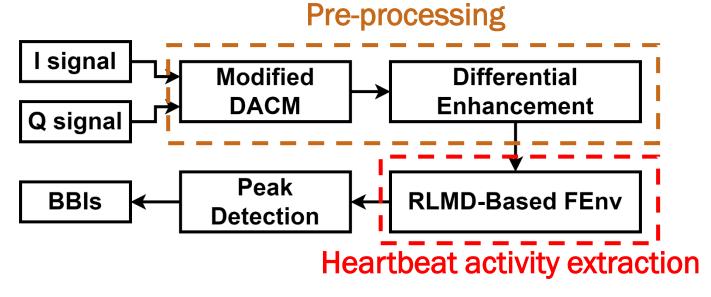
- Local mean decomposition (LMD) [4] method is specially designed to solve multicomponent AM-FM signals.
- However, LMD is difficult to verify whether the pole is selected for the real pole, leading to the end effect and mode mixing problems.

[4] J.S. Smith, "The local mean decomposition and its application to EEG perception data," J. R. Soc. Interface, 2005.

RLMD Based Frequency Envelogram

- Robust-LMD (RLMD) [5] was proposed to improves the performance of LMD by simultaneously solving problems such as:
 - Boundary conditions
 - Envelope estimation
 - Sifting stopping criterion
- The AM signals from RLMD processing are the energy of the instantaneous frequency at each time point that called frequency envelogram (FEnv).
- Since not every AM signal contains heartbeat components, the heartbeat signal is screened by autocorrelation to generate a higher-resolution FEnv.
- The proposed method is obtained through the time domain, which greatly improves the time-frequency resolution of STFT.

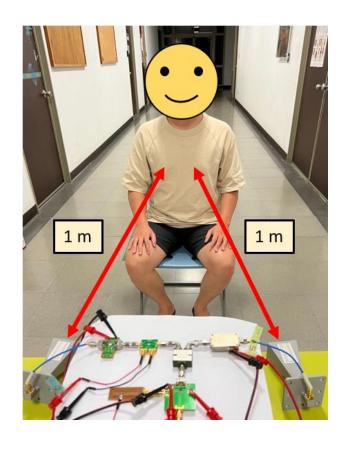
[5] Z.L. Liu, Y.Q. Jin, M.J. Zuo, Z.P. Feng, "Time-frequency representation based on robust local mean decomposition for multicomponent AM-FM signal analysis," *Mechanical systems and signal processing*, 2017.

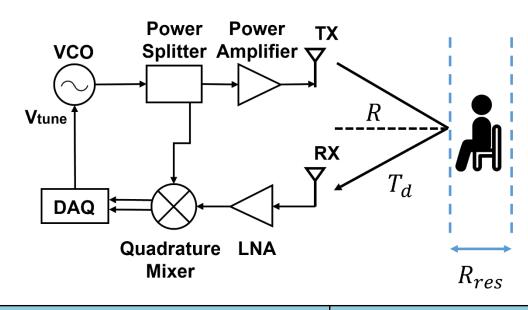


Proposed Method

- Proposed algorithm consists of two main parts:
 - Pre-processing
 - Modified differentiate and cross-multiply (MDACM) [2]
 - Differential enhancement [3]
 - Heartbeat activity extraction
 - RLMD-based FEnv

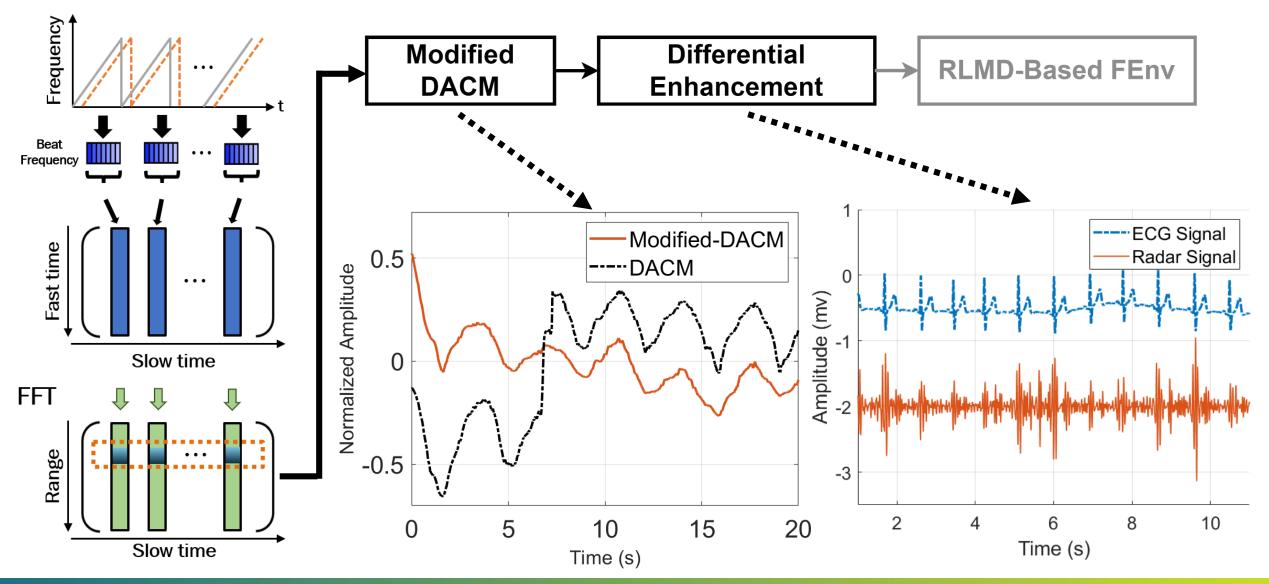
[2] W. Xu, C. Gu and J. -F. Mao, "Noncontact High-Linear Motion Sensing Based on A Modified Differentiate and Cross-Multiply Algorithm," *IEEE IMS*, 2020. [3] Y. Xiong, Z. Peng, C. Gu, S. Li, D. Wang and W. Zhang, "Differential Enhancement Method for Robust and Accurate Heart Rate Monitoring via Microwave Vital Sign Sensing," *IEEE Trans. Instrument. and Meas.*, 2020.



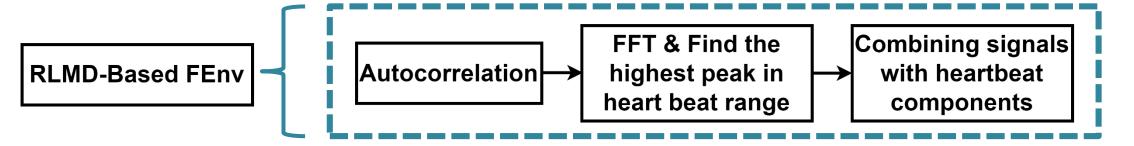


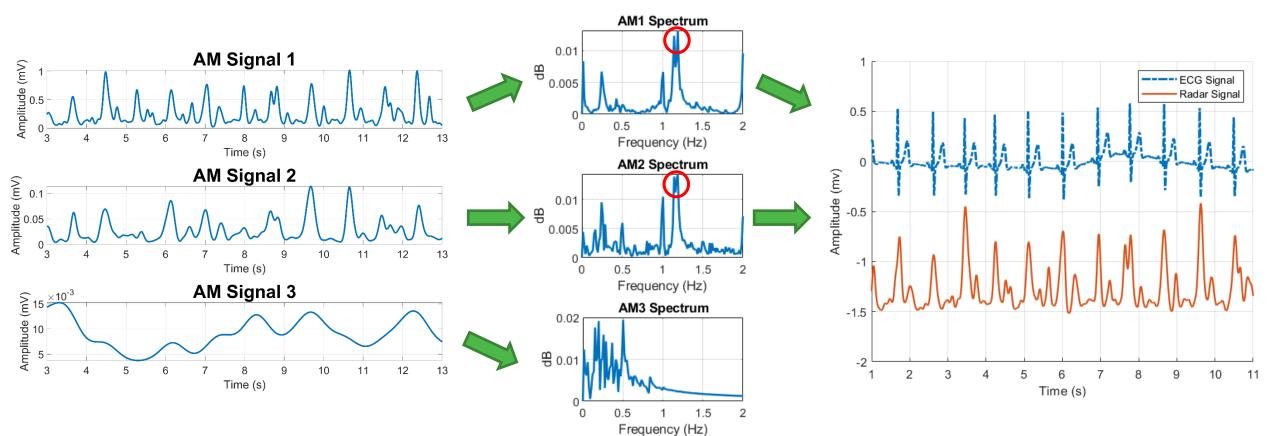
Experiment Setup

Measurement Scenarios

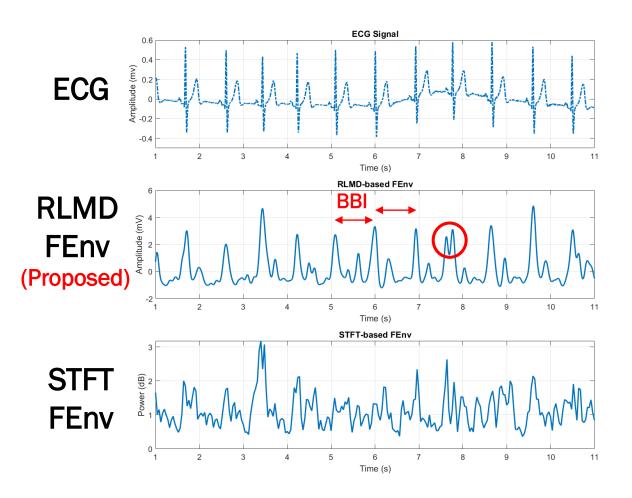

Parameter	Value	
Central Modulation Frequency	24 GHz	
Modulation Bandwidth	160 MHz	
Pulse Repetition Interval	2 ms	
Range Resolution	0.9375 m	
Measurement Period	60 sec	

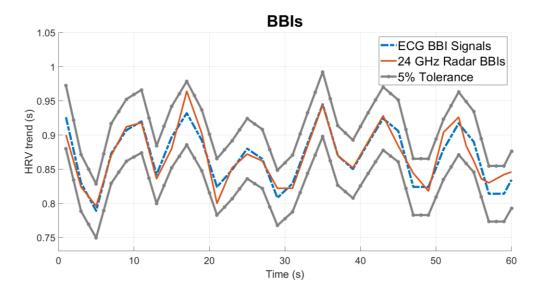
Measurement Results (1)





Measurement Results (2)




Measurement Results (3)

The result of the extracted heartbeat

The error rate in every second

$$MRE = \frac{1}{N_{BBI}} \sum_{i=1}^{N_{BBI}} \frac{|BBI_{radar}(i) - BBI_{ECG}(i)|}{BBI_{ECG}(i)}$$

MRE: 1.84 %

Comparison

Ref.	System	Method	Error
[4]	24 GHz CW Radar @ 0.8m	IZA-SLMS with TWV	< 5 %
[5]	24 GHz CW Radar @ 0.8m	Spectral Viterbi with RNN-based deep clustering	< 7 %
[6]	24 GHz CW Radar @ 0.5m	STFT-based FEnv with HSMM	< 2 %
This work	24 GHz FMCW Radar @ 1m	Differential Enhancement with RLMD-based FEnv	< 2 %

^[4] C. Ye, K. Toyoda and T. Ohtsuki, "A Stochastic Gradient Approach for Robust Heartbeat Detection with Doppler Radar Using Time-Window-Variation Technique," IEEE Trans on Biomed. Engr., 2019.

^[5] C. Ye and T. Ohtsuki, "Spectral Viterbi Algorithm for Contactless Wide-Range Heart Rate Estimation with Deep Clustering," IEEE TMTT, May 2021.

^[6] W. Xia, Y. Li and S. Dong, "Radar-Based High-Accuracy Cardiac Activity Sensing," in IEEE Trans. Instrument. and Meas., 2021

Conclusion

- A novel method is proposed to accurately extract HRV in the FMCW radar system including the distance information of the target.
- The FEnv generated by the RLMD improves the time-frequency resolution, and the addition of a filtering mechanism can greatly improve the resolution of FEnv.
- The average HRV trend error of this method is 1.84 %, which has the same accuracy as other methods in CW radar system.

Thanks for your attention!

Questions?

Feel free to contact me:

Dr. Chin-Lung Yang:

cyang@mail.ncku.edu.tw

