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* Challenges to modeling heterogeneously integrated systems

* Modeling geometry and automatic meshing for analysis
* Accelerating solution — sparse solver and multigrid analysis

* Domain decomposition and solution flexibility
* Physics informed neural networks for local modeling
* Benchmarking against FE solution
* Capturing complex powermaps
* Variational formulation

* Increasing the design space

 Conclusions
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Variational Principle: Discretization:
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Y. Chen, S. S. Ganti and G. Subbarayan, "A Computational Strategy for Code- and Mesh-Agnostic Nonlinear
Interface Lagra nge multiplier field used Global-Local Analysis," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.
12, no. 5, pp. 740-759, May 2022, doi: 10.1109/TCPMT.2022.3167651.
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* The Neural Network formulations that solve PDEs have been coined Physics Informed Neural Networks (PINNs)

min j LN (x;6) — flI2dV +a j IBN (x; 6) — gll2ds
Q d

Lu=f, x€ . Q

Bu =g, x € 00 or: meinj ||L1V(x,N (x;0)) _f”2dV
Q

* Network N has trainable parameters 6
« N is a function of network N and domain variables that automatically satisfies the boundary conditions

* Minimize by evaluating the error at colocation points using automatic differentiation and tuning 8 with back propagation

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed Neural Networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol. 378, pp. 686—707, 2019. d0i:10.1016/j.jcp.2018.10.045
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* Given PINNs’ ability to learn complex and non-linear behavior, they are natural candidates for local models in

domain decomposition

Non-Homogenous 2D Poisson Equation PINN:
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* Use of PINNs for Domain Decomposition and other methods is only practical if they are either faster or more

accurate than conventional methods such as Finite Element solutions

A PINN solver was developed and benchmarked against an FE Solution
Benchmark Problem

T=0.1
Network Notation

“3 :3”
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e Sharp, non-linear, transitions can be learned by PINNs

e This is important for simulating problems with measured inputs such as a discrete power map
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* The strong form loss function of traditional PINNs can be recast into a variational form
* This increases the computational efficiency of training by eliminating second order gradients

* There is no analog to automatic differentiation for integration so quadrature must be used during training

V-kVT =f €Q

r=T el kf WV2TdQ) =fwfdg kj V(wVT)dQ — kj VwVTdQ = jwfdﬂ
9= 4 ely Q Q Q Q Q
q = —kVT

kf A - (wVT)dQ—kj VWVTdQ =j
r Q

Wfdﬂ Choosew = 0onT k-[ VWVTdQ+ijdQ =0
Q Q Q
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While finding the solution to a single linear PDE with PINNs is slower and less accurate than finite elements, the

network can be re-formulated to solve multiple problems at once

Recently, a network was trained to solve the 3D poison equation with arbitrary boundary conditions and power

generation

PDE configurations for chip design A multi-input DeepONet PDE/BCs-constrained loss

Update parameters|in branch nets
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oo surfuce o Yod el o€ i * Evaluation: 0.001-0.01 seconds
~ wich, | @ & 5 ——
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— Some other BCs ...
Coordinates y _ Trunk net Heat equation
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Z. Liu et al., “DeepOHeat: Operator Learning-based Ultra-fast Thermal Simulation in 3D-IC Design,” https://doi.org/10.48550/arXiv.2302.12949
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* Heterogeneous systems are a complex collection of chip packages and require multiple strategies to address
geometry spanning 7-8 orders of magnitude in length scale
* Developed general data structure for geometry modeling, accelerated solvers and domain decomposition
strategies for flexible solution
* While PINNs present exciting new ways to solve PDEs, they do not show efficiency or accuracy advantages
compared to Finite Element Methods when used to approximate Linear PDEs using their strong or variational forms
* Even if training time is large, PINNs’ evaluation time is faster than FE solution time
* To efficiently explore a design space, more model parameters (i.e. conductivity or power generation fields) must be

cast as inputs to the network or a deep neural network can be trained on Finite Element simulations
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