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Heterogeneously Integrated Systems

• System is a complex collection of chip packages

• System spans 7-8 orders in length!

• Multiphysics analysis critical to system design and 

reliability assessment
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• Challenges to modeling heterogeneously integrated systems

• Modeling geometry and automatic meshing for analysis

• Accelerating solution – sparse solver and multigrid analysis

• Domain decomposition and solution flexibility

• Physics informed neural networks for local modeling

• Benchmarking against FE solution

• Capturing complex powermaps

• Variational formulation

• Increasing the design space

• Conclusions

Outline



4 Tu1A-2

Geometry and Automated FE Meshing
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Example: Representational Details

Heat Spreader

Mold Compound

Object definition

Memory Layer
Dimension 

(W/L/H)
Feature Size Material

TIM 1 3.5/3.5/0.2 0.25/0.25/0.2 SAC 387

Device 3.5/3.5/0.4 0.25/0.25/0.4 Silicon

HS Layer
Dimension 

(W/L/H)
Feature Size Material

TIM 18/18/0.2 1.0/1.0/0.2 SAC 387

Copper 18/18/1.0 1.0/1.0/0.2 Copper

Stack Datum

Substrate (0,0)

Logic (1,1), (6.5,1), (1,6.5), (6.5,6.5)

Memory (1.5,1.5), (7, 1.5), (1.5, 7), (7,7)

Mold Compound (-3,-3, 0.2)

HS (-3,-3)

M/C Layer
Dimension 

(W/L/H)
Feature Size Material

Mold 18/18/2.6 1.0/1.0/0.5 Copper

Topology Graph
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Accelerating Solution: Sparse Solver

Percentage of non-zero terms: ~1.08 %  

Percentage of non-zero terms: ~ 0.14 %  

2D

3D

Dense solver

Sparse solver
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Accelerating Solution: Multigrid Analysis

Level n

Level 0

.

.

.

Level k

.

.

.

Finest Level

Coarsest Level

Common V-Cycle for MG:

Coarsening

System to Solve

Solution Approximation

Interpolation

Final Solution

Level 1

Level n-1

Sol. Approx.

Sol. Approx.
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Thermal Design using Multigrid Analysis

TSV 

Insertion

Heat 

Removal

Path 

Decision

CPU/Memory

Arrangement

TSV Insertion
Heat 

Removing

Path Decision

CPU/Memory

Arrangement

Fine-mesh SolutionAdaptive Grid Solution

7.5x more efficient than regular optimization Final 𝑇𝑚𝑎𝑥 = 54.0.∘ 𝐶 Final 𝑇𝑚𝑎𝑥 = 53.9.∘ 𝐶

Substrate

Heat Spreader

17.4% area TSV
12.7% area TSV

C. -P. Chen, Yifan Weng and G. Subbarayan, "Topology optimization for efficient heat removal in 3D packages," 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical 
Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 2016, pp. 238-244, doi: 10.1109/ITHERM.2016.7517556.



9 Tu1A-2

Accelerated FE Solution

Geometry, Mesh and 
Boundary Conditions

Specify Power Map

Temperature Solution

Heat Flux Solution
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Flexibility in Solution: Decomposition

Fully Refined Models Global-Local Modeling Domain Decomposition

Full-Model Global-Local Domain 
Decomposition

Computationally efficient  ✓ ✓

Reusable models for reduced setup time   ✓

Allow subdomains with different discretizations and 
commercial solvers
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Two-Way Coupled DDM Solution

Variational Principle: 
𝛿𝐼 ≝ 𝛿𝐼𝐺 + 𝛿𝐼𝐿 + 𝛿𝐼Γ = 0

𝛿𝐼𝐺 𝑢𝐺 = න

Ω𝐺

𝜎𝐺 : 𝛿휀𝐺𝑑Ω − න

Ω𝐺

ҧ𝑓𝐺: 𝛿𝑢𝐺𝑑Ω − න

𝜕Ω𝐺

ҧ𝑡𝐺: 𝛿𝑢𝐺𝑑𝑆

𝛿𝐼𝐿 𝑢𝐿 = න

Ω𝐿

𝜎𝐿: 𝛿휀𝐿𝑑Ω − න

Ω𝐿

ҧ𝑓𝐿: 𝛿𝑢𝐿𝑑Ω − න

𝜕Ω𝐿

ҧ𝑡𝐿: 𝛿𝑢𝐿𝑑𝑆

𝛿𝐼Γ 𝜆 = න

Γ

𝜆 𝛿𝑢𝐺 − 𝛿𝑢𝐿 𝑑Γ + න

Γ

𝛿𝜆 𝑢𝐺 − 𝑢𝐿 𝑑Γ

Necessary Conditions:
∇ ∙ 𝜎 + ҧ𝑓 = 0 on Ω𝐺 ∪ Ω𝐿

𝜎 ∙ 𝒏 = ҧ𝑡 on Γ𝑛
𝑢𝐿 = 𝑢𝐺on Γ

𝜆 = −𝜎𝐺 ∙ 𝒏 or 𝛿𝑢𝐺 = 0 on Γ
𝜆 = 𝜎𝐿 ∙ 𝒏 or 𝛿𝑢𝐿 = 0 on Γ

Choose: 𝑁𝜆 = 𝑁𝐿

𝐂𝑖𝑗
𝑳 Γ𝑁𝑖=

𝐿 𝜉 𝑁𝑗
𝐿 𝜉 d𝜉

𝐂𝑖𝑗
𝐺=Γ𝑁𝑖

𝐿 𝜉 𝑁𝑗
𝐺 𝜉 d𝜉

𝐏𝐋𝐆: Mesh projection matrix

Discretization:

𝑢𝐿 = 𝑁𝐿𝒖𝐿

𝑢𝐺 = 𝑁𝐺𝒖𝐺

𝛿𝜆 = 𝑁𝜆𝒖𝜆

Interface Compatibility Condition:

𝐮𝐋 = 𝐏𝐋𝐆𝐮G

𝐅G = −𝐏𝐋𝐆
T
𝐅𝐋

𝐏𝐋𝐆 = (𝐂L)+𝐂G

Interface Lagrange multiplier field used 
to connect force and displacement fields

Y. Chen, S. S. Ganti and G. Subbarayan, "A Computational Strategy for Code- and Mesh-Agnostic Nonlinear 
Global–Local Analysis," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 
12, no. 5, pp. 740-759, May 2022, doi: 10.1109/TCPMT.2022.3167651.

Total number of nodes: 60876

Total number of elements: 20205

Total number of nodes: 88249

Total number of elements: 29120
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Accelerating the Decomposed Solution
12

Residual force
𝑟 = 𝑃𝑇𝑓𝐿 + 𝑓𝐺

Line search
𝑢𝑘+1= 𝑢𝑘 + 𝛼𝐾𝑘

−1𝑟

SR1 Update:

𝐊𝒌
−𝟏𝒓𝒏

= 𝑲𝒌−𝟏
−𝟏 𝒓𝒏 + (−𝜟𝒖𝒌

𝑻𝜟𝒓𝒌 + 𝜟𝒓𝒌
𝑻𝑲𝒌−𝟏

−𝟏 𝜟𝒓𝒌)
𝜟𝒖𝒌𝜟𝒖𝒌

𝑻

𝜟𝒖𝒌
𝑻𝜟𝒓𝒌

𝟐
𝒓𝒏

−
(𝑲𝒌−𝟏

−𝟏 𝜟𝒓𝒌𝜟𝒖𝒌
𝑻 + 𝜟𝒖𝒌𝜟𝒓𝒌

𝑻𝑲𝒌−𝟏
−𝟏 )𝒓𝒏

𝜟𝒖𝒌
𝑻𝜟𝒓𝒌

DFP Update:

𝐊𝒌
−𝟏𝒓𝒏 = 𝑲𝒌−𝟏

−𝟏 𝒓𝒏 + 𝑲𝒌−𝟏
−𝟏 𝒓𝒌

rk
𝑻(𝑲𝒌−𝟏

−𝟏 𝒓𝒏)

𝒓𝒌
𝑻(𝚫𝐮𝐤 − 𝐊𝐤−𝟏

−𝟏 𝒓𝒌)

Y. Chen, S. S. Ganti and G. Subbarayan, "A Computational Strategy for Code- and Mesh-Agnostic Nonlinear 
Global–Local Analysis," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 
12, no. 5, pp. 740-759, May 2022, doi: 10.1109/TCPMT.2022.3167651.
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Example: Cyclic Stress Evolution in BEOL
136/2/21

Total number of nodes: 532049

Total number of elements: 177184

Total number of nodes: 60876

Total number of elements: 20205

Total number of nodes: 88249

Total number of elements: 29120

Abaqus Global-Local Model

Abaqus Full Model

Principal Stress in TEOS (20th Cycle)
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Physics Informed Neural Networks

• The Neural Network formulations that solve PDEs have been coined Physics Informed Neural Networks (PINNs)

ℒ𝑢 = 𝑓, 𝑥 ∈ Ω

ℬ𝑢 = 𝑔, 𝑥 ∈ 𝜕Ω

min
𝜃

න
Ω

ℒ𝑁 (𝑥; 𝜃) − 𝑓 2𝑑𝑉 +𝛼න
𝜕Ω

ℬ𝑁 (𝑥; 𝜃) − 𝑔 2𝑑𝑆

min
𝜃

න
Ω

ℒ ෩𝑁(𝑥, 𝑁 (𝑥; 𝜃)) − 𝑓
2
𝑑𝑉𝑜𝑟:

• Network 𝑁 has trainable parameters 𝜃

• ෩𝑁 is a function of network 𝑁 and domain variables that automatically satisfies the boundary conditions

• Minimize by evaluating the error at colocation points using automatic differentiation and tuning 𝜃 with back propagation

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed Neural Networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial 
differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019. doi:10.1016/j.jcp.2018.10.045 
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PINNs for Decomposed Domains?

Non-Homogenous 2D Poisson Equation PINN:

• Given PINNs’ ability to learn complex and non-linear behavior, they are natural candidates for local models in 

domain decomposition

E. Kharazmi, Z. Zhang, and G. E. M. Karniadakis, “HP-VPINNs: Variational physics-informed neural networks with domain decomposition,” Computer Methods in Applied Mechanics and 
Engineering, vol. 374, p. 113547, 2021. doi:10.1016/j.cma.2020.113547
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PINN Benchmark Solution

• Use of PINNs for Domain Decomposition and other methods is only practical if they are either faster or more 

accurate than conventional methods such as Finite Element solutions

𝜵 ∙ 𝒌𝜵𝑻 + 𝟏 = 𝟎

𝑻 = 0.1

𝑻 = 0.1𝑻 = 0.1

𝑻 = 0.1

• A PINN solver was developed and benchmarked against an FE Solution
Benchmark Problem

“3”“3:3”

Network Notation



17 Tu1A-2

PINNs Vs. Finite Elements

Training Time vs Domain Percent Error After 10,000 Training Iterations 100:100 Temperature

100:100 Percent Error
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Capturing Complex Powermaps

• Sharp, non-linear, transitions can be learned by PINNs

• This is important for simulating problems with measured inputs such as a discrete power map
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Variational Formulation

• The strong form loss function of traditional PINNs can be recast into a variational form

• This increases the computational efficiency of training by eliminating second order gradients

• There is no analog to automatic differentiation for integration so quadrature must be used during training

∇ ∙ 𝑘∇𝑇 = 𝑓 ϵΩ
𝑇 = ത𝑇 𝜖Γ𝑇
𝑞 = ത𝑞 𝜖Γ𝑞
𝑞 = −𝑘∇𝑇

𝑘න
Ω

𝑤∇2𝑇𝑑Ω = න
Ω

𝑤𝑓𝑑Ω 𝑘න
Ω

∇(𝑤∇𝑇)𝑑Ω − 𝑘න
Ω

∇𝑤∇𝑇𝑑Ω = න
Ω

𝑤𝑓𝑑Ω

𝑘න
Γ

ො𝑛 ∙ (𝑤∇𝑇)𝑑Ω − 𝑘න
Ω

∇𝑤∇𝑇𝑑Ω = න
Ω

𝑤𝑓𝑑Ω 𝑘න
Ω

∇𝑤∇𝑇𝑑Ω + න
Ω

𝑤𝑓𝑑Ω = 0𝐶ℎ𝑜𝑜𝑠𝑒 𝑤 = 0 𝑜𝑛 Γ
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Increasing the Design Space

• While finding the solution to a single linear PDE with PINNs is slower and less accurate than finite elements, the 

network can be re-formulated to solve multiple problems at once

• Recently, a network was trained to solve the 3D poison equation with arbitrary boundary conditions and power 

generation

Z. Liu et al., “DeepOHeat: Operator Learning-based Ultra-fast Thermal Simulation in 3D-IC Design,” https://doi.org/10.48550/arXiv.2302.12949 

• Training: 2-10 hours

• Evaluation: 0.001-0.01 seconds
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Conclusions

• Heterogeneous systems are a complex collection of chip packages and require multiple strategies to address 

geometry spanning 7-8 orders of magnitude in length scale

• Developed general data structure for geometry modeling, accelerated solvers and domain decomposition 

strategies for flexible solution

• While PINNs present exciting new ways to solve PDEs, they do not show efficiency or accuracy advantages 

compared to Finite Element Methods when used to approximate Linear PDEs using their strong or variational forms

• Even if training time is large, PINNs’ evaluation time is faster than FE solution time

• To efficiently explore a design space, more model parameters (i.e. conductivity or power generation fields) must be 

cast as inputs to the network or a deep neural network can be trained on Finite Element simulations


	Default Section
	Slide 1
	Slide 2: Heterogeneously Integrated Systems
	Slide 3: Outline
	Slide 4: Geometry and Automated FE Meshing
	Slide 5: Example: Representational Details
	Slide 6: Accelerating Solution: Sparse Solver
	Slide 7: Accelerating Solution: Multigrid Analysis
	Slide 8: Thermal Design using Multigrid Analysis
	Slide 9: Accelerated FE Solution
	Slide 10: Flexibility in Solution: Decomposition
	Slide 11: Two-Way Coupled DDM Solution
	Slide 12: Accelerating the Decomposed Solution
	Slide 13: Example: Cyclic Stress Evolution in BEOL
	Slide 14: Physics Informed Neural Networks
	Slide 15: PINNs for Decomposed Domains?
	Slide 16: PINN Benchmark Solution
	Slide 17: PINNs Vs. Finite Elements
	Slide 18: Capturing Complex Powermaps
	Slide 19: Variational Formulation
	Slide 20: Increasing the Design Space
	Slide 21: Conclusions


