



#### **TU1A-4**

# Al and Machine Learning for Microwaves A Highlight of Past, Present and Future Trends

Q.J. Zhang

Carleton University, Ottawa, Canada







#### Component Modeling/Simulation





More accurate solutions

More computationally intensive

More equations More variables More complex algorithms





# From Biological Learning to Machine Learning



- Biological Neural Network









# Artificial Neural Network (ANN)





Artificial neuron









#### Universal Approximation Theorem



#### Mathematical theorem published by Cybenko in 1989

#### Summary in plain words:

Given enough hidden neurons, a multilayer perceptron with at least 1 hidden layer can approximate an arbitrary continuous multidimensional function to any required accuracy.







### **Neural Network Training**





Objective:

to adjust w such that

minimize  $\sum_{w} (y-d)^2$ 



**Validation Data** 

by simulation/

measurement

 $d_{\rm v} = d(x_{\rm v})$ 



## Early Works of ANN for Microwave Design



- Microwave impedance matching (Vai, Prasad, IEEE MGL 1993)
- Microstrip circuit design (Horng, Wang, Alexopoulos, IMS 1993)
- Analysis and optimization of microwave circuits (Zaabab, Zhang, Nakhla, IMS 1994)
- Modeling via interconnects in microstrip circuits (Watson, Gupta IMS 1996)
- Microwave CAD (Creech, Paul, Lesniak, Jenkins, Lee, Calcatera, IMS 1996)
- Microwave optimization and statistical design (Zaabab, Zhang, Nakhla, T-MTT, 1995)
- Microwave circuit analysis and design (Vai, Prasad, T-MTT 1995)
- Modeling vias and interconnects in dataset circuits (Watson, Gupta, T-MTT 1996)







### Historical Events of ANN for Microwaves in IMS



#### • 1<sup>st</sup> Workshop:

Workshop on Applications of ANN to Microwave Design

IEEE MTT-S IMS (Denver, Colorado), 1997.

Chairs: K.C. Gupta and M.S. Nakhla;

Speakers: L. Mahajan, K.C. Gupta, M.S. Nakhla, G.L. Creech, Q.J. Zhang

#### • 1<sup>st</sup> Short Course:

Applications of ANN to RF and Microwave Design

IEEE MTT IMS, (Boston, Massachusetts), June 2000.

Instructors: K.C. Gupta and Q.J. Zhang









# Applications of ANN to RF and Microwave Design

(Special Issue of the Int. J. RF Microwave CAE, 1999)

- Review of ANN, and filter modeling and classification (Burrascano, Fiori and Mongiardo)
- Synthesis of transmission line structures (Watson, Cho and Gupta)
- Microwave circuit design beyond black box models (Vai and Prasad)
- Large-signal device modeling and nonlinear circuit design (Harkouss, Rousset, et. al.)
- RBF models for MESFET and HEMT intermodulation distortion (Garcia et. al.)
- ANN structures and training (Wang and Zhang)
- Use of prior knowledge for ANN development (Watson, Gupta and Mahajan)
- Neurocomputing in IC process applications (Creech and Zurada)
- ANN for filter design trained with FEM EM data (Fedi, Gaggelli, Manetti and Pelosi)
- Wavelet neural net for EM based optimization (Bila, Harkouss, Ibrahim, Rousset et. al.)
- Calculation of the bandwidth of microstrip antennas (Sagiroglu, Guney and Erler)







## Examples of Research Directions in ANN for Microwave Design



- General applications of ANN to microwave design
- Knowledge-based neural networks
- Neural networks for parameterized modeling of EM structures
- Neural network based models for microwave transistors
- Neural network based behavioral modeling of nonlinear circuits
- Inverse modeling
- Neural network structure and training algorithms







# Machine Learning in Microwave Engineering



Special Issue of the IEEE Microwave Magazine, Oct. 2021 Guest Editors: Costas Sarris, Q.J. Zhang

- Machine Learning in Microwave Engineering (Sarris, Zhang)
- Design Space and Frequency Extrapolation: Using Neural Networks
   (Bhatti, Nikita, Swaminathan)
- ANNs for Fast Parameterized EM Modeling:

(Feng, Na, Jin, W. Zhang, Q. Zhang)

Enabling Automatic Model Generation of RF Components:
 A Practical Application of Neural Networks

(L. Zhang, Kabir, Sweeney, Kim)









Special Issue of the IEEE Trans. MTT (Nov. 2022) Guest Editor: Q.J. Zhang

209 full-paper submissions

45 accepted/published















Special Issue of the IEEE Trans. MTT (Nov. 2022) Guest Editor: Q.J. Zhang

#### Overviews of Al/Machine learning

ANN for microwave computer-aided design (Feng et al);

Bayesian learning for uncertainty quantification, optimization and inverse modelling (Swaminathan, et al)

Al-assisted surrogate modelling and optimization of microwave filters (Yu, et al)









Special Issue of the IEEE Trans. MTT (Nov. 2022)

Al/ML approaches for analysis, forward/inverse modelling and optimizations for microwave design

AI/ML technologies for nonlinear device modelling, power amplifier (PA) behavioural modelling and digital predistortion,

Al/ML for electromagnetic inverse scattering, near-field scanning, or electromagnetic imaging

AI/ML for radar sensing and signal processing

Al/ML for biomedical and other applications









Special Issue of the IEEE Trans. MTT (Nov. 2022)

#### Machine Learning Methodologies

ANNs

deep learning

convolutional neural networks (CNN)

recurrent neural networks (RNN)

long-short term memory networks (LSTM)

generative-adversarial networks (GAN)

k-means clustering

support vector machine (SVM)

Gaussian process (GP) regression

Bayesian optimization (BO),

reinforcement learning (RL),

U-net etc;









Special Issue of the IEEE Trans. MTT (Nov. 2022)

#### Microwave Applications

modelling and design: passives - planar and 3D electromagnetic structures

microwave filters

SIW circuits

high-speed IC packages

modelling and design: actives - GaN-HEMT/FinFET/nanosheet FET

PA/DPD, MIMO transmitters

Electromagnetic imaging for breast cancer detection/localization, thorax imaging

Doppler radar based human motion recognition, gesture recognition and object identification







### AI/ML Day in IMS2023



#### Organizers: Q.J. Zhang and Costas Sarris

- Al/ML Bootcamp (Q.J. Zhang, C. Sarris, U. Gustavsson) Bootcamp on Sunday
- Al/ML for RF PA Design and Digital Predistortion (A. Zhu, R. Ma) Workshop WMC
- Brain-Inspired Learning for Intelligent Spectrum Sensing (L. Katehi), Invited talk
- Al/ML Technologies for Microwaves (Q.J. Zhang, C. Sarris), Special Session Tu1A
- AI/ML Technologies for Signal and Power Integrity
   (J.E. Rayas-Sanchez, C. Sarris), Focus Session Tu3A
- Al/ML based Wireless System Design and Operation Hope or Hype?

  (C. Sarris, Q.J. Zhang, O. Eliezer, B. Sadhu) Panel Session PL2
- Machine Learning for RF to mm-Wave Systems
   (A. Tang and Q.J. Zhang), Technical Session Tu2A







### Al and Machine Learning for Microwaves



Machine learning (such as neural networks) exploited in microwave area since 1990s.

Activity in machine learning intensified in recent years

**Ongoing Activities and Trends** 

new algorithms, ML structures, microwave knowledge-based ML methods

component level - EM, GaN HEMTs, ...

circuit/system level - PA, DPD, MIMO, intelligent wireless systems

application level - biomedical, security, autonomous systems, communications

new and emerging applications









#### Thank You

