

Tu1B-2

Temperature and Process Calibration of HBT-Based Square-Law Power Detectors for Millimeter-Wave Built-In Self-Test

Y. Wenger^{1,2}, B. Meinerzhagen², and V. Issakov²

¹Keysight Technologies Germany GmbH, Böblingen, Germany

²TU Braunschweig, Institute of CMOS Design, Braunschweig, Germany

Agenda

- Millimeter-Wave Built-In Self-Test
- Process & Temperature Variation in Power Detectors
- Calibration Procedure
- Results

Millimeter-wave Built-In Self-Test

Typical application scenario

mm-Wave Power Detector

$$V_{\text{det}} = 2R_{\text{o}}(p, T) I_{1}(p, T) \left[1 + \frac{1}{2} \left(\frac{\hat{V}_{\text{dm}}}{V_{\text{T}}(T)} \right)^{2} \right]$$

$$V_{\text{ref}} = 2R_{\text{o}}(p, T) I_1(p, T) + \Delta V_{\text{p}}(p, T)$$

p: process dependence

T: temperature dependence

Naïve calibration:

$$V_{\rm o} = V_{\rm det} - V_{\rm ref}$$

Power Prediction Error

Process & Temperature Variation

Effects Overlap in Practice

Worst-case example from a combined Monte-Carlo simulation with -40°C to 125°C temperature sweep

For PPE $\leq \pm 1$ dB: Dynamic range is zero in this example!

Calibration Procedure

$$V_{\text{det}} = 2R_{\text{o}}(p, T) I_{1}(p, T) \left[1 + \frac{1}{2} \left(\frac{\hat{V}_{\text{dm}}}{V_{\text{T}}(T)} \right)^{2} \right] \qquad V_{\text{ref}} = 2R_{\text{o}}(p, T) I_{1}(p, T) + \Delta V_{\text{p}}(p, T)$$

$$V_{\text{ref}} = 2R_{\text{o}}(p, T) I_{1}(p, T) + \Delta V_{\text{p}}(p, T)$$

- 1. Determine the (temperature-dependent) mismatch between main and reference path
 - a) Minimize temperature-dependence during design (e.g. PTAT $R_0 \rightarrow \text{CTAT } I_1$)
 - b) Two-point temperature calibration
- 2. Divide $\frac{V_{\rm det}}{V_{\rm ref} \Delta V_{\rm n}} = 1 + \frac{1}{2} \left(\frac{\widehat{V}_{\rm dm}}{V_{\rm T}}\right)^2$ to remove the systematic process shift
- 3. Multiply with $V_{\rm T}^2$ (temperature sensor)

$$V_{\text{cal}} = \sqrt{2V_{\text{T}}^2} \cdot \sqrt{\frac{V_{\text{det}}}{V_{\text{ref}} - \Delta V_{\text{p}}(T)}} - 1$$

Test Chip

- IHP SG13G2 SiGe
- Automotive radar band (76-81 GHz)

Results

Conclusion

- The dynamic range of HBT-based power detectors is limited by mismatch
- Temperature and process variation limit the power measurement accuracy
- Calibration based on the square-law model is able to remove these errors
- Hardware overhead: One temperature sensor (possibly: Current source with programmable PTAT slope)

