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Compact Models for GaN
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• No process info required

• Does not capture device physics, Large 
Parameter set

• Angelov(not scalable), EEHEMT(separate DC and 
AC models)

• Accurate but no physical intuition

• Expensive and elaborate measurement 
setup

• CMC standard

• Requires basic process info

• Unified and predictive Model. Captures 
device physics

• Modelling over a large dynamic range and 
frequency
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Ga-Polar vs N-Polar
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N-polar GaN performance
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N-Polar provides break through 

output power density relative to 

traditional Ga-polar devices[1]

N-polar GaN Deep Recess 
MIS-HEMTs achieved Pout

~ 8.8 W/mm @94 GHz

[1]B. Romanczyk, S. Wienecke et al., “Demonstration of constant 8 W/mm power density at 10, 30, and 94 

GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs,” IEEE Transactions on Electron Devices, vol. 

65, no. 1, pp. 45–50, jan 2018
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GaN Receiver Applications
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Need devices with high OIP3/PDC
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Linearity Sensitivity to Bias
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gm3

gm1
gm3 zero-crossings result in two 

peaks in the OIP3/PDC but it occurs 

in a narrow range of gate bias

Derivative 

superposition can 

improve bias range 

Original 

device

Gate bias 

offset

gm3 cancellatiion
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Device Level Derivative Superpositon
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[2] P. Shrestha, M. Guidry et al., “A Novel Concept using Derivative Superposition at the Device-Level to Reduce 

Linearity Sensitivity to Bias in N-polar GaN MISHEMT,” DRC, vol. 2020-June.

Novel device structure where threshold voltages are shifted instead of the 

conventional gate bias offset in circuit level derivative cancellation

Device with more 

negative 

threshold voltage VT1 VT2
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N-polar GaN MVSG model
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[3] R. R. Karnaty, P. Shrestha et al., “Compact Modeling of N-polar GaN HEMTs for Intermodulation Distortion in 

Millimeter-wave Bands,” IEEE Transactions on Microwave Theory and Techniques, 2023

Access region model

Mobility Enhancement

L=1um,2um,4um,

6um, 10um,14um
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Velocity Profile Extraction
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Set A

Set B
Extracted velocity profile is verified against 

measured data to choose between different 

parameter sets having similar IV model accuracy
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VT1 Device Modeling
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VT2 Device Modeling
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Dual-VT Model
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The dual-VT model is created 

using the extracted models of 

the VT1 and VT2 devices. The 

intrinsic models are connected 

in parallel
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Dual-VT Model Results
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S-parameter(0-67 GHz) 
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Large Signal Verification
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VT1

VT2

Dual-VT

Dual-VT model predicts slightly higher gain 

and Pout compared to measurement

Measured at

30 GHz
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Intermodulation Distortion
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VT1

VT2

Dual-VT

Discrepency in VT1 model is propagated to 

the Dual-VT device

30 GHz 

measurement 

with tone 

spacing of 1 

MHz
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Improved sensitivity to bias
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Dual-VT device has higher range of gate bias with high OIP3/PDC without 

degrading the gain.
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Conclusion
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Deep Recess HEMT

Bulk 
traps

Interface 
traps

Surface traps
Surface 

traps

Traditional SiN Passivation GaN Cap with Deep Recess

2DEG

• More potential charge traps
• Interface/bulk traps removed
• Enhancement of access region charge and mobility



27 Tu1B-4

SEM of dual-VT Device
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