

Tu1B-4

Modeling and Measurement of Dual-Threshold N-polar GaN HEMTS for High-Linearity RF Applications

Rohit R. Karnaty, Pawana Shrestha, Matthew Guidry, Brian Romanczyk, Umesh K. Mishra and James F. Buckwalter

University of California, Santa Barbara

- Introduction
- Device level derivative superposition
- Modified MVSG model for N-Polar
- Dual-V_T model
- Results
- Conclusion

- Introduction
- Device level derivative superposition
- Modified MVSG model for N-Polar
- Dual-V_T model
- Results
- Conclusion

Compact Models for GaN

Angelov-GaN EEHEMT

- No process info required
- Does not capture device physics, Large Parameter set
- Angelov(not scalable), EEHEMT(separate DC and AC models)

Artificial Neural Network

DynaFET

- Accurate but no physical intuition
- Expensive and elaborate measurement setup

Physics based

MVSG (charge)

ASM-HEMT (Surface potential)

- CMC standard
- Requires basic process info
- Unified and predictive Model. Captures device physics
- Modelling over a large dynamic range and frequency

Ga-Polar vs N-Polar

Ga-polar

Top barrier induces 2DEG

N-polar

Back barrier induces 2DEG

N-polar GaN performance

[1]B. Romanczyk, S. Wienecke et al., "Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs," IEEE Transactions on Electron Devices, vol. 65, no. 1, pp. 45–50, jan 2018

GaN Receiver Applications

Need devices with high OIP3/PDC

- Introduction
- Device level derivative superposition
- Modified MVSG model for N-Polar
- Dual-V_T model
- Results
- Conclusion

Linearity Sensitivity to Bias

gm3 zero-crossings result in two peaks in the OIP3/P_{DC} but it occurs in a narrow range of gate bias

Derivative superposition can improve bias range

Device Level Derivative Superpositon

Novel device structure where threshold voltages are shifted instead of the conventional gate bias offset in circuit level derivative cancellation

[2] P. Shrestha, M. Guidry et al., "A Novel Concept using Derivative Superposition at the Device-Level to Reduce Linearity Sensitivity to Bias in N-polar GaN MISHEMT," DRC, vol. 2020-June.

- Introduction
- Device level derivative superposition
- Modified MVSG model for N-Polar
- Dual-V_T model
- Results
- Conclusion

N-polar GaN MVSG model

[3] R. R. Karnaty, P. Shrestha et al., "Compact Modeling of N-polar GaN HEMTs for Intermodulation Distortion in Millimeter-wave Bands," IEEE Transactions on Microwave Theory and Techniques, 2023

Velocity Profile Extraction

Extracted velocity profile is verified against measured data to choose between different parameter sets having similar IV model accuracy

V_{T1} Device Modeling

L_G=60nm (channel length)

W=2x25 um

 $L_{GS} = 105$ nm (source access region)

 L_{GD} = 335nm (drain access region)

S-parameter(0-67 GHz)

V_{T2} Device Modeling

L_G=60nm (channel length)

W=2x25 um

 L_{GS} = 105nm (source access region)

 L_{GD} = 335nm (drain access region)

S-parameter(0-67 GHz)

- Introduction
- Device level derivative superposition
- Modified MVSG model for N-Polar
- Dual-V_T model
- Results
- Conclusion

Dual-V_T Model

The dual- V_T model is created using the extracted models of the V_{T1} and V_{T2} devices. The intrinsic models are connected in parallel

Dual-V_T Model Results

S-parameter(0-67 GHz)

- Introduction
- Device level derivative superposition
- Modified MVSG model for N-Polar
- Dual-V_T model
- Results
- Conclusion

Large Signal Verification

Dual-V_T model predicts slightly higher gain and Pout compared to measurement

Intermodulation Distortion

Model

-5

30 GHz measurement with tone spacing of 1 MHz

Discrepency in V_{T1} model is propagated to the Dual- V_T device

8

15

 $OIP3/P_{DC}$ (dB)

-7

-6

 V_{GS} (V)

Improved sensitivity to bias

Dual- V_T device has higher range of gate bias with high OIP3/ P_{DC} without degrading the gain.

Conclusion

References

[1]B. Romanczyk, S. Wienecke et al., "Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs," IEEE Transactions on Electron Devices, vol. 65, no. 1, pp. 45–50, jan 2018

[2] P. Shrestha, M. Guidry et al., "A Novel Concept using Derivative Superposition at the Device-Level to Reduce Linearity Sensitivity to Bias in N-polar GaN MISHEMT," DRC, vol. 2020-June.

[3] R. R. Karnaty, P. Shrestha et al., "Compact Modeling of N-polar GaN HEMTs for Intermodulation Distortion in Millimeter-wave Bands," IEEE Transactions on Microwave Theory and Techniques, 2023

Backup Slides

Deep Recess HEMT

Traditional SiN Passivation

More potential charge traps

GaN Cap with Deep Recess

- Interface/bulk traps removed
- Enhancement of access region charge and mobility

SEM of dual-V_T Device

