

mm-Wave GaN-on-Si HEMTs with a P_{SAT} of 3.9W/mm at 28GHz

Rana ElKashlan, Ahmad Khaled, Sachin Yadav, Hao Yu, Uthayasankaran Peralagu, AliReza Alian, Nadine Collaert, Piet Wambacq, and Bertrand Parvais

Outline

- Introduction
 - Motivation
 - GaN-on-Si HEMTs with Varying Top Barriers
- Large-Signal Characterisation Results
- Performance Comparison with State-of-the-Art
- Summary

Motivation

Technology Downscaling for High Frequency Operation

Motivation:

Quantifying the impact of barrier layer material and thickness choices on the large-signal performance of downscaled GaN-on-Si HEMTs

GaN-on-Si HEMTs with Varying Top Barriers

InAIN

Gate metal

AIGaN

5nm SiN	
Al _{0.25} GaN Barrier	
Inm AIN	
300nm GaN Channel	
Iμm cGaN	
0.99µm 5nmAlN/28nm	
Al _{0.3} GaN	
40nm Al _{0.3} GaN	
I 75nm AIN	
200mm Si (111)	

These GaN-on-Si devices have varying thinned down top barriers: 6nm InAIN 5nm AlGaN 8nm AlGaN

 $f_{\rm T}/f_{\rm MAX}$: (3.3V) 100/120GHz $(L_{\sigma} \sim 100 \text{nm})$

GaN-on-Si HEMTs with Varying Top Barriers

DC Characterisation

Large-Signal Characterisation Setup

Setup Specs				
f ₀	28GHz			
Tuning	Load Pull			
Mode	CW			
VSWR	I I.5 (Passive LP)			

					L _{GS}	
I00nm	8	25µm	0.25µm	0.67µm	0.54µm	<u>Variable</u>

Large-Signal Characterisation Results

$$P_{out} = \frac{1}{8} I_{max} (V_{max} - V_k)$$

The higher I_{max} for the 6nm InAIN barrier boosts its large-signal performance compared to the AlGaN barrier devices. P_{sat} ~2.8W/mm, PAE~50%.

		W _F				
150nm	8	<u>Variable</u>	0.25µm	0.67µm	0.54µm	6nm InAIN

Large-Signal Characterisation Results

6nm InAIN: Device Finger-Width Variation

For a 6nm InAIN barrier, reducing the device width from 25 μ m to 5 μ m boosts $P_{\rm sat}$ to ~ 3.9W/mm with no distinct impact on the PAE ($L_{\rm G}$ ~150nm).

Comparison with State-of-the-Art

Summary

- InAIN/GaN-based HEMTs outperform AIGaN/GaN-based HEMTs owing to InAIN's higher I_{max} and better linearity:
 - At $100 \text{nm} L_G (8 \times 25 \mu \text{m})$: 2.8W/mm @ 50% PAE.
 - At I50nm L_G (8x5µm): 3.9W/mm @ 45% PAE.

Suitable for power amplifiers in battery-powered user equipment at mm-wave.

- Accounting for several limitations can further boost the large-signal metrics:
 - Gate-leakage mitigation to improve the linearity for thin barrier devices
 - Adopting a MISHEMT topology can be useful.
 - Reducing R_S for thinner AlGaN barriers to improve the linearity
 - Replacing the 2DEG-based access regions with heavily N-doped GaN.
 - Layout optimisations

Thank you for your attention!

					L _{GS}	
I00nm	8	25µm	0.25µm	0.67µm	0.54µm	<u>Variable</u>

Appendix

More positive Vth and Gate Leakage: The impact on device linearity at large-signal

