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Connecting Minds. Exchanging Ideas.

* BSs deployed in various
environments
» Carrier aggregation (CA) in 5G
* Nearby objects can
1. Reflectthe TX signal
2. Apply nonlinear distortion

» Air-induced passive intermodulation
(PIM)
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o0 IMS 1. Introduction o

Connecting Minds. Exchanging Ideas. SAN DIEGO

* Intermodulation stems from nonlinear systems
* PIM from passive devices
* Possibly an issue in FDD systems
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o0 IMS 2. System Model o

Connecting Minds. Exchanging Ideas. SAN DIEGO

» K parallel TX/RX chains transmit aggregated signals v [n]
» Signals propagate though channels h,, to PIM source input
* Nonlinear distortion in PIM source

* Interfering signals d|[n] received after channel w,,
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o0 IMS 3. Proposed Method

Connecting Minds. Exchanging Ideas.

» Generate distortion estimate y[n] and subtract from d|n]

 Employ below cascade model:
— Adaptive filters hy ,, ..., hg ,, wy
— Static filter b
— Spline-interpolated LUT c,,
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o0 IMS 3. Proposed Method

Connecting Minds. Exchanging Ideas.

* Main Path:
— z[n] = Y5_1 hj, Vi, SUm of adaptive linear filter outputs

— s[n] = z[n](1 + P[c,), spline interpolation

— y[n] = wls,,, adaptive linear filter
—y[n] = b'y,, static linear filter H H [H} [H} ﬁ ﬁ
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SLIMS 3. Proposed Method %
* Low complexity parameter adaptation with gradient descent:
—Wpi1 = Wy F ﬂwe[n] S:b
— Cpy1 = € + u.e|n]ilyb
—hgni1 = hyn + ppe[n]E; ;b
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G2IMS 4. Measurements & Results

Connecting Minds. Exchanging Ideas. SAN DIEGO

e Measurements in anechoic
chamber

e Steel wool as PIM source

 TX: 1819 MHz and 1866.5
MHz (n3)

 RX:1771.5 MHz (n3)
 TX power at 31 dBm
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B0IMS 4, Measurements & Results

* Two cases with 5 MHz and 20 MHz carriers, comparing to
previous models (Full BF; Ch. Coeff. Est.) [1]

* Complexities given below in floating point operations (FLOPS)

N

SAN DIEGO

per sample
5 MHz
Main Path 4,554
20 MHz 332
5 MHz 6,280
Learning 1,843,200 10,142
20 MHz 9,048

[1] V. Lampu, L. Anttila, M. Turunen, M. Fleischer, J. Hellmann, and M. Valkama, “Air-Induced Passive Intermodulation in FDD MIMO Systems:
Algorithms and Measurements,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 1, pp. 373-388, 2023.
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GIMS 4. Measurements & Results

Connecting Minds. Exchanging Ideas.

 Performance of the reference
models met or exceeded with
cascade model

* Initial convergence in ~0.5 ms;
full convergence in ~40 ms
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S0 IMS 5. Conclusion

SAN DIEGO

* Air-induced PIM was discussed in
a MIMO scenario

 Novel cascaded model to remove
PIM from RX data

* Gradient descent-based updates
for low complexity

* Performance on par with previous
works but with lower complexity
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