

TU1C-1

Cancellation of Air-Induced Passive Intermodulation in FDD MIMO Systems: Low-Complexity Cascade Model and Measurements

Vesa Lampu¹, Lauri Anttila¹, Matias Turunen¹, Marko Fleischer², Jan Hellmann², and Mikko Valkama¹

¹Tampere University, Tampere, Finland

²Nokia Mobile Networks, Ulm, Germany

Contents

- 1. Introduction
- 2. System Model
- 3. Proposed Method
- 4. Measurements & Results
- 5. Conclusion

1. Introduction

- BSs deployed in various environments
- Carrier aggregation (CA) in 5G
- Nearby objects can
 - 1. Reflect the TX signal
 - 2. Apply nonlinear distortion
- Air-induced passive intermodulation (PIM)

Figure source: https://research.tuni.fi/wireless/infrastructures/

1. Introduction

- Intermodulation stems from nonlinear systems
- PIM from passive devices
- Possibly an issue in FDD systems

2. System Model

- K parallel TX/RX chains transmit aggregated signals $v_k[n]$
- Signals propagate though channels \mathbf{h}_n to PIM source input
- Nonlinear distortion in PIM source
- Interfering signals d[n] received after channel \mathbf{w}_n

3. Proposed Method

- Generate distortion estimate $\widehat{y}[n]$ and subtract from d[n]
- Employ below cascade model:
 - Adaptive filters $h_{1,n}$, ..., $h_{K,n}$, w_n
 - Static filter b
 - Spline-interpolated LUT \mathbf{c}_n

3. Proposed Method

Main Path:

$$-z[n] = \sum_{k=1}^{K} \mathbf{h}_{k,n}^T \mathbf{v}_{k,n}$$
, sum of adaptive linear filter outputs

$$-s[n] = z[n](1 + \Psi_n^T c_n)$$
, spline interpolation

$$-y[n] = \mathbf{w}_n^T \mathbf{s}_n$$
, adaptive linear filter

$$-\widehat{\mathbf{y}}[\mathbf{n}] = \mathbf{b}^T \mathbf{y}_n$$
, static linear filter

 $\mathbf{v}_{k,n}$, \mathbf{s}_n , and \mathbf{y}_n collect past samples of $v_k[n]$, s[n], and y[n], respectively

3. Proposed Method

Low complexity parameter adaptation with gradient descent:

$$-\mathbf{w}_{n+1} = \mathbf{w}_n + \mu_w e[n] \mathbf{S}_n^* \mathbf{b}$$

$$-\mathbf{c}_{n+1} = \mathbf{c}_n + \mu_c e[n] \mathbf{\Pi}_n^* \mathbf{b}$$

$$-\mathbf{h}_{k,n+1} = \mathbf{h}_{k,n} + \mu_{h}e[n]\mathbf{\Xi}_{k,n}^{*}\mathbf{b}$$

Definitions of S_n , Π_n , and Ξ_n omitted for brevity

4. Measurements & Results

- Measurements in anechoic chamber
- Steel wool as PIM source
- TX: 1819 MHz and 1866.5
 MHz (n3)
- RX: 1771.5 MHz (n3)
- TX power at 31 dBm

4. Measurements & Results

- Two cases with 5 MHz and 20 MHz carriers, comparing to previous models (Full BF; Ch. Coeff. Est.) [1]
- Complexities given below in floating point operations (FLOPs) per sample

Model		This work	Full BF	Ch. Coeff. Est.
Main Path	5 MHz	196	4,554	404
	20 MHz	332		
Learning	5 MHz	6,280	1,843,200	10,142
	20 MHz	9,048		

[1] V. Lampu, L. Anttila, M. Turunen, M. Fleischer, J. Hellmann, and M. Valkama, "Air-Induced Passive Intermodulation in FDD MIMO Systems: Algorithms and Measurements," IEEE Trans. Microw. Theory Techn., vol. 71, no. 1, pp. 373–388, 2023.

4. Measurements & Results

- Performance of the reference models met or exceeded with cascade model
- Initial convergence in ~0.5 ms;
 full convergence in ~40 ms

5. Conclusion

- Air-induced PIM was discussed in a MIMO scenario
- Novel cascaded model to remove PIM from RX data
- Gradient descent-based updates for low complexity
- Performance on par with previous works but with lower complexity

