

Tu1D-2

Ku/K-Band Low Power Dual-Channel LNAs With Less Than 1.4dB NF for SATCOM Phased Array Applications

M. Ghadiri-Sadrabadi, H. Khatri, C. Ko, W. Wong, U. Kodak, and T. Kanar Renesas Electronics, San Diego, United States

RACE FOR SATCOM

- Higher thruput makes SATCOM extremely desirable for next generation of communication system.
- Lower latency, path loss and cost makes LEO a better choice.
 - Needs phased arrays!

OUTLINE

- Introduction
- LNAs for SATCOM applications
- Design of the Low Noise Amplifier
- Measurement Results
- Summary

IMS RX NF Effect on Array Implementation

- G/T is a crucial metric for link budget.
- For a desired G/T, antenna gain, and directivity receiver NF sets the required number of elements.

Optimized Array for Improved NF

- Multi-channel beamformers are used to reduced the required number of Ics.
 - This adds extra routing which results in extra loss!
- One solution: Add LNAs right at the antenna V&H Feeds Patch Antenna
 - Requires dual-channel LNAs

OUTLINE

- Introduction
- LNAs for SATCOM applications
- Design of the Low Noise Amplifiers
- Measurement Results
- Summary

LNA IMPLEMENTATION

- Ku (10.7GHz-12.7GHz) and K (17.4GHz-21.4GHz) band are most commonly used for SATCOM RX.
- Goal: Design dual channel LNAs for both bands
 - Large numbers are used in arrays so P_{dc} is a key factor.

- SOI Technology is a great choice due to low NF_{min} and high interconnect Q.

LNA TOPOLOGY

- Two-Stage cascode topology is chosen
 - Provide high gain and low NF
 - Better stability
 - ESD protection thru:
 - Output shunt inductor
 - Input on-package shunt inductor
- Floating body device provides better NF.
- Two-sided gate contact is used to reduce Rg.

K-Band LNA Simulation Results

Simulation Methodology:

- EMX software is used for EM simulation of all interconnects above fourth metal layer.
- All other interconnects including the cores are extracted with Calibre RCCC
- Two-Stages burn 14mA from a 1.3V VDD.

Ku-Band LNA Simulation Results

Two-Stages burn a total of 9mA from a 1.3V supply.

OUTLINE

- Introduction
- LNAs for SATCOM applications
- Design of the Low Noise Amplifiers
- Measurement Results
- Summary

Measurement Setup

- Chip was fabricated in GF 45RFSOI technology.
- Flip-Chip-Scale (FCCS) is used to package the part.
- Part is measured through a Keysight PNA-X.
 - Measurement reference plane is moved to the IC pin using AFR.

K-Band LNA Measurement Results

Biasing the LNA at 1.3V VDD and 14mA/ch current consumption.

K-Band LNA Measurement Results

Sweeping the reference current demonstrates the trade-off between Pdc and RF performance.

Ku-Band LNA Measurement Results

Biasing the LNA at 1.3V VDD and 7.5mA/ch current consumption.

Ku-Band LNA Measurement Results

Lower current benefits NF and IP1dB at the price of less gain.

OUTLINE

- Introduction
- LNAs for SATCOM applications
- Design of the Low Noise Amplifiers
- Measurement Results
- Summary

State-of-the-Art Comparison

Reference	This Work		[1] IMS 2019	[2] IMS 2018
Frequency (GHz)	10.7-12.7	17.4-21.4	13.9-22	24-28
Peak Gain (dB)	23	21	23.1	14
Min NF (dB)	1.3	1.35	1.5	1.4
DC Con. (mW)	9.5	15	12.5	15
IP1dB (dBm)	-21	-22	-21.6	-4.6
Package	FCCSP	FCCSP	FC	On-Wafer
Die Area (mm²/ch)	0.84	0.84	0.7	0.3

SUMMARY

- Dual channel LNAs for Ku and K band LNAs for SATCOM applications are presented.
- Packaged LNAs achieve better than 1.4dB noise figure with low power consumption.
- This work paves the way for more efficient RX antenna array by reducing the number of elements and power consumption.
- Future work should focus on further improvement in NF while achieving better power match.

References

- [1] A. H. Aljuhani and G. M. Rebeiz, "A 12.5 mW Packaged K-band CMOS SOI LNA with 1.5 dB NF," IMS 2019.
- [2] C. Li, O. El-Aassar, A. Kumar, M. Boenke and G. M. Rebeiz, "LNA Design with CMOS SOI Process-I.4dB NF K/Ka band LNA". IMS 2018.

Thank you for your attention!

Back-up Slides

